Skip to main content
Log in

Differences in the release ofl-glutamate andd-aspartate from primary neuronal chick cultures

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Primary neuronal cultures were made from eight-day-old embryonic chick telencephalon. Ten-day-old cultures were used to study the release ofd-[3H]aspartate andl-[3H]glutamate. Thed-[3H]aspartate release was stimulated by increasing potassium concentrations, but it was not calcium dependent. In contrast, the potassium dependentl-[3H]glutamate release was calcium dependent, and furthermorel-[3H]glutamate release was optimal at potassium concentrations<30 mM. The inhibitors of glutamate uptake, dihydrokainate and 1-aminocyclobutane-trans-1,3-dicarboxylic acid (CACB), also referred to as cis-1-aminocyclobutane-1,3-dicarboxylate, were used in the release experiments. Dihydrokainate had no effect on aspartate release, whereas CACB increased both the basal efflux ofd-[3H]aspartate and the potassium evoked release. CACB had no effect on the potassium stimulatedl-glutamate release. We believe thatl-glutamate is released mainly by a vesicular mechanism from the presumably glutamatergic neurons present in our culture.d-aspartate release observed by us, could be mediated by a transporter protein. The cellular origin of this release remains to be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nadler, J. V., Martin, D., Bustos, G. A., Burke, S. P., and Bowe, M. A. 1990. Regulation of glutamate and aspartate release from the Schaffer collaterals and other projections of CA3 hippocampal pyramidal cells. Progress in Brain Res. 83:115–130.

    CAS  Google Scholar 

  2. Robinson, M. B., Sinor, J. D., Dowd, L. A., and Kerwin, Jr. J. F. 1993. Subtypes of sodium-dependent high-affinityl-[3H]glutamate transport activity: Pharmacologic specificity and regulation by sodium and potassium. J. Neurochem 60:167–179.

    Article  PubMed  CAS  Google Scholar 

  3. Amara, S. G. 1992. A tale of two families. Nature 360:420–421.

    Article  PubMed  CAS  Google Scholar 

  4. Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. 1992. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89:10955–10959.

    Article  PubMed  CAS  Google Scholar 

  5. Pines, G., Danbolt, N. C., Bjørås, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I. 1992. Cloning and expression of a rat brainl-glutamate transporter. Nature 360:464–467.

    Article  PubMed  CAS  Google Scholar 

  6. Kanai, Y., and Hediger, M. A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471.

    Article  PubMed  CAS  Google Scholar 

  7. Steffgen, J., Koepsell, H., and Schwarz, W. 1991. Endogenousl-glutamate transport in oocytes ofXenopus laevis. Biochim. Biophys. Acta 1066:14–20.

    Article  PubMed  CAS  Google Scholar 

  8. Szatkowski, M., and Attwell, D. 1994. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17:359–365.

    Article  PubMed  CAS  Google Scholar 

  9. Szatkowski, M., Barbour, B., and Attwell, D. 1990. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446.

    Article  PubMed  CAS  Google Scholar 

  10. Taylor, C. P., Geer, J. J., and Burke, S. P. 1992. Endogenous extracellular glutamate accumulation in rat neocortical cultures by reversal of the transmembrane sodium gradient. Neurosci. Letters 145:197–200.

    Article  CAS  Google Scholar 

  11. Dunlop, J., Grieve, A., Damgaard, I., Schousboe, A., and Griffiths, R. 1992. Sulphur-containing excitatory amino acid-evoked Ca2+-independent release ofd-[3H]aspartate from cultured cerebellar granule cells: The role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier. Neurosci. 50:107–115.

    Article  CAS  Google Scholar 

  12. Bernath, S. 1992. Calcium-independent release of amino acid neurotransmitters: fact or artifact. Prog. Neurobiol. 38:57–91.

    Article  PubMed  CAS  Google Scholar 

  13. Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Finn-Mogens, S. H., and Ottersen, O. P. 1983. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520.

    Article  PubMed  CAS  Google Scholar 

  14. Naito, S., and Ueda, T. 1985. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44:99–109.

    Article  PubMed  CAS  Google Scholar 

  15. Villanueva, S., Fiedler, J., and Orrego, F. 1990. A study in rat brain cortex synaptic vesicles of endogenous ligands for N-methyl-D-aspartate receptors. Neurosci. 37:23–30.

    Article  CAS  Google Scholar 

  16. Cousin, M. A., Nicholls, D. G., and Pocock, J. M. 1993. Flunarizine inhibits both calcium-dependent and- independent release of glutamate from synaptosomes and cultured neurons. Brain Res. 606:227–236.

    Article  PubMed  CAS  Google Scholar 

  17. Belhage, B., Rehder, V., Hansen, G. H., Kater, S. B., and Schousboe, A. 1992.3H-d-aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K+-stimulation. J. Neurosci. Res. 33:436–444.

    Article  PubMed  CAS  Google Scholar 

  18. Gilman, S. C., Bonner, M. J., and Pellmar, T. C. 1994. Free radicals enhance basal release ofd-[3H]aspartate from cerebral cortical synaptosomes. J. Neurochem. 62:1757–1763.

    PubMed  CAS  Google Scholar 

  19. Poli, A., Contestabile, A., Migani, P., Rossi, L., Rondelli, C., Virgili, M., Bissoli, R., and Barnabei, O. 1985. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J. Neurochem. 45:1677–1686.

    Article  PubMed  CAS  Google Scholar 

  20. Goldin, S. M., Finch, E. A., Reddy, N. L., Hu, L-Y., and Subbarao, K. 1994. Exocytosis, calcium oscillations, and novel glutamate release blockers as resolved by rapid superfusion. Ann. N.Y. Acad. Sci. 710:271–286.

    PubMed  CAS  Google Scholar 

  21. Lewin, L., Mattsson, M-O., Rassin, D. K., and Sellström, Å. 1992a. On the activity of γ-aminobutyric acid and glutamate transporters in chick embryonic neurons and rat synaptosomes. Neurochem. Res. 17:333–337.

    Article  PubMed  CAS  Google Scholar 

  22. Lewin, L., Mattsson, M-O., and Sellström, Å. 1992b. Inhibition of transporter mediated γ-aminobutyric acid (GABA) release by SKF 89976-A, a GABA uptake inhibitor, studied in a primary neuronal culture from chicken. Neurochem. Res. 17:577–584.

    Article  PubMed  CAS  Google Scholar 

  23. Lewin, L., Mattsson, M-O., Grahn, B., and Sellström, Å. 1994. Inhibition by SKF 89976-A of the γ-aminobutyric acid release from primary neuronal chick cultures. Acta Physiol. Scand. 152:173–179.

    Article  PubMed  CAS  Google Scholar 

  24. Pettman, B., Louis, J. C., and Sensenbrenner, M. 1979. Morphological and biochemical maturation of neurones cultured in the absence of glial cells. Nature 281:378–380.

    Article  Google Scholar 

  25. Eriksson, L., Jonsson, J., Sjöström, M., and Wold, S. 1988. Multivariate parametrization of amino acid properties by thin layer chromatography. Quant. Struct-Act. Relat. 7:144–150.

    Article  CAS  Google Scholar 

  26. Lewin, L. Transport of GABA and glutamate in neurons. 1993. Thesis. Umeå University.

  27. Nicholls, D. G. 1989. Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.

    Article  PubMed  CAS  Google Scholar 

  28. Pocock, J., Murphie, H., and Nicholls, D. G. 1988. Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm but does not affect glutamate exocytosis. J. Neurochem. 50:745–751.

    Article  PubMed  CAS  Google Scholar 

  29. Griffiths, R., Dunlop, J., Gorman, A., Senior, J., and Grieve, A. 1994. L-transpyrrolidine-2-4-dicarboxylate and cis-1-aminocyclobutane-1,3-dicarboxylate behave as transportable, competitive inhibitors of the high-affinity glutamate transporters. Biochem. Pharmacol. 47:267–274.

    Article  PubMed  CAS  Google Scholar 

  30. Fonnum, F. 1993. Regulation of the synthesis of the transmitter glutamate pool. Prog. Biophys. Molec. Biol. 60:47–57.

    Article  CAS  Google Scholar 

  31. Larsson, O. M., Falch, E., Krogsgaard-Larsen, P., and Schousboe, A. 1988. Kinetic characterization of inhibition of γ-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J. Neurochem. 50:818–823.

    Article  PubMed  CAS  Google Scholar 

  32. Fletcher, E. J., Mewett, K. N., Drew, C. A., Allan, R. D., and Johnston, G. A. R. 1991. Inhibition of high affinityl-glutamic acid uptake into rat cortical synaptosomes by the conformationally restricted analogue of glutamic acid,cis-1-aminocyclobutane-1,3-dicarboxylic acid. Neurosci. Letters 121:133–135.

    Article  CAS  Google Scholar 

  33. Johnston, G. A. R., Kennedy, S. M. E., and Twitchin, B. 1978. Action of the neuro-toxin kainic acid on high affinity uptake ofl-glutamic acid in rat brain slices. J. Neurochem. 32:121–127.

    Article  Google Scholar 

  34. Balcar, V. J., and Li, Y. 1992. Heterogeneity of high affinity uptake ofl-glutamate andl-aspartate in the mammalian central nervous system. Life Sci. 51:1467–1478.

    Article  PubMed  CAS  Google Scholar 

  35. Fletcher, E. J., and Johnston, G. A. R. 1991. Regional heterogeneity ofl-glutamate andl-aspartate high-affinity uptake systems in the rat CNS. J. Neurochem. 57:911–914.

    Article  PubMed  CAS  Google Scholar 

  36. Robinson, M. B., Hunter-Ensor, M., and Sinor, J. 1991. Pharmacologically distinct sodium-dependentl-[3H]glutamate transport processes in rat brain. Brain Res. 544:196–202.

    Article  PubMed  CAS  Google Scholar 

  37. Terrian, D. M., Dorman, R. V., Damron, D. S., and Gannon, R. L. 1991. Displacement of endogenous glutamate withd-aspartate: An effective strategy for reducing the calcium-independent component of glutamate release from synaptosomes. Neurochem. Res. 16:35–41.

    Article  PubMed  CAS  Google Scholar 

  38. Fleck, M. W., Henze, D. A., Barrionuevo, G., and Palmer, A. M. 1993. Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J. Neurosci. 13:3944–3955.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, L., Mattsson, MO. & Sellström, Å. Differences in the release ofl-glutamate andd-aspartate from primary neuronal chick cultures. Neurochem Res 21, 79–85 (1996). https://doi.org/10.1007/BF02527675

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527675

Key Words

Navigation