Skip to main content
Log in

Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Functional morphology of the calcareous test ofEchinus esculentus was investigated by parametric finite element analysis, an engineering technique developed for numerical analysis of the behaviour of complex structures responding to external forces. Finite element models of the test were generated by methods of Computer Aided Geometric Design (CAGD) to calculate the mechanical responses to different types of loading. The load cases included vertical, concentrated load at the apex, vertical, distributed load on the upper third of the test, internal pressure and tensile forces as introduced into the test by tube feet activity. The objectives were the shape of the test, the distribution of material and the alternating zones of porous and non-porous plates within the test.—Echinoid tests resist external loading without showing any specific points of failure. The thickened margins of the periproct and peristome apertures account for load-bearing capacity as well as the thickned meridional structures which carry a greater portion of stress than the thinner parts of the test. Distribution of material is not a response to concentrated loads on the apex nor to self-weight. Taken strictly, echinoid tests are not thin (or membrane) shells. Under loading, bending moments occur which influence the stress state in the entire test. The pneu hypothesis could not be confirmed. Adaptation of the test shape or of the distribution of material as a response to internal pressure does not exist. Tests of regular echinoids are especially well adapted to the mechanical activity of the ambulacral tube feet, i.e. the shape of the test, its flattening towards the substrate, the outward bulge of the ambulacra and the differential distribution of material within the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhm W, Farin G, Kahmann J (1984) A survey of curve and surface methods in CAGD. Comput Aided Geometric Des 1:1–60

    Article  Google Scholar 

  • Bonnet A (1925) Documents pour servir à l'étude da la variation chez les Échinides. Bull Inst Océanogr Monaco 462:1–28

    Google Scholar 

  • Bramski C (1981) Rotationssymmetrische tropfenförmige Behälter. Wilhelm Ernst and Sohn, Berlin, pp 82

    Google Scholar 

  • Burkhardt A, Märkel K (1980) Statics of primary spines of diadematidae. In: Echinoderms: present and past: Proc Eur Colloq Echinoderms, Brussels. Rotterdam, pp 85–87

  • Currey JD (1976) Rigid materials. In: Wainwright SA, Biggs WD, Currey JD, Gosline JM (eds) Mechanical design in organisms. Edward Arnold, London, pp 144–239

    Google Scholar 

  • Dafni J (1986a) Seeigel. Echinoid skeletons as pneu structures. Konzepte SFB 230, Heft 13; Universität Stuttgart u. Tübingen, pp 116

  • Dafni J (1986b) A biomechanical model for the morphogenesis of regular echinoid tests. Paleobiology 12(2):143–160

    Google Scholar 

  • Dafni J, Erez J (1982) Differential growth inTripneustes gratilla (Echinoidea). In: Lawrence JM (ed) Echinoderms: Proc Int Conf Tampa Bay., 1981 pp 71–75. A.A. Balkema, Rotterdam

    Google Scholar 

  • Day CL (1929) New spheroidal design for large oil tanks. Eng News-Rec 103:416–419

    Google Scholar 

  • Dix TG (1970) Biology ofEvechinus chloroticus (Echinoidea: Echinometridae) from different localities. NZJ Mar Freshwater Res 4:91–116

    Article  Google Scholar 

  • Ebert TA (1967) Negative growth and longvity in the purple sea urchinStrongylocentrotus purpuratus (Stimpson). Science 157:557–558

    Article  PubMed  CAS  Google Scholar 

  • Ebert TA (1968) Growth rates of the sea urchinStronglylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49:1075–1091

    Article  Google Scholar 

  • Ebert TA (1982) Longevity, life history, and relative body wall size in sea urchins. Ecol Monogr 52:353–394

    Article  Google Scholar 

  • Ellers O, Telford M (1992) Causes and consequences of fluctuating coelomic pressure in sea urchins. Biol Bull 182:424–434

    Google Scholar 

  • Fechter H (1965) Über die Funktion der Madreporenplatte der Echinoidea. Z Vgl Physiol 51:227–257

    Article  Google Scholar 

  • Heyman J (1977) Equilibrium of shell structures. Oxford University Press, England, pp 134

    Google Scholar 

  • Huebner KH (1975) The finite element method for engineers. John Wiley and Sons, New York, pp 500

    Google Scholar 

  • Imam MH (1982) Three dimensional shape optimization. Int J Num Meth Eng 18:661–673

    Article  Google Scholar 

  • Jensen M (1969) Breeding and growth ofPsammechinus miliaris (Gmelin). Ophelia 7:65–78

    Google Scholar 

  • Kimmich S, Ramm E (1989) Structural optimization and analysis with program system CARAT. In: Eschenauer HA, Thierauf G (eds) Discretisation methods and structural optimization procedures and applications. Springer, Berlin Heidelberg, pp 186–193

    Google Scholar 

  • Lawrence J (1987) A functional biology of echinoderms. John Hopkins University Press, Baltimore, pp 340

    Google Scholar 

  • Lewis JB (1958) The biology of the tropical sea urchinTripneustes esculentus Leske in Barbados, British West Indies. Can J Zool 36:607–621

    Google Scholar 

  • Lewis JB, Storey GS (1984) Differences in morphology and life history traits of the echinoidEchinometra lucunter from different habitats. Mar Ecol Prog Ser 15:207–211

    Google Scholar 

  • Märkel K (1975) Wachstum des Coronarskeletes vonParacentrotus lividus Lmk. (Echinodermata, Echinoidea). Zoomorphologie 82:259–280

    Article  Google Scholar 

  • McMahon TA, Bonner JT (1985) Form und Leben: Konstruktionen vom Reißbrett der Natur. Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg, pp 221

    Google Scholar 

  • McPherson BF (1965) Contributions to the biology of the sea urchinTripneustes ventricosus. Bull Mar Sci 15:228–244

    Google Scholar 

  • Moore HB (1934) A comparison of the biology ofEchinus esculentus in different habitats. Part I. J Mar Biol Assoc NS 19, No 2:869–885

    Article  Google Scholar 

  • Moore HB (1935) A comparison of the biology ofEchinus esculentus in different habitats. Part II. J Mar Biol Assoc UK NS 20:109–128

    Article  Google Scholar 

  • Moss ML, Meehan MM (1968) Growth of echinoid test. Acta Anat 69:409–444

    Article  PubMed  CAS  Google Scholar 

  • Nandakumar CG, Rajagopalan K (1989) A bar finite element analogy for echinodome shells. Comput Struct 33:1085–1088

    Article  Google Scholar 

  • Pestel E, Wittenburg J (1983) Technische Mechanik, Bd. 2: Festigkeitslehre. BI-Wissenschaftsverlag, Mannheim, pp 441

    Google Scholar 

  • Rao SS (1982) The finite element method in engineering. Pergamon Press, Oxford, 1–21

    Google Scholar 

  • Royles R, Sofoluwe AB, Baig MM, Currie AJ (1980) Behaviour of underwater enclosures of optimum design. Strain 16:12–20

    Article  Google Scholar 

  • Telford M (1985) Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105: 114–124

    Article  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge, pp 794

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, London, pp 423

    Google Scholar 

  • Weber JN (1969) The incorporation of magnesium in the skeletal calcits of echinoderms. Am J Sci 267:537–566

    Article  CAS  Google Scholar 

  • Weber J, Greer R, Voight B, White E, Roy R (1969) Unusual strength properties of echinoderm calcite related to structure. J Ultrastruct Res 26:355–366

    Article  PubMed  CAS  Google Scholar 

  • Zienkiewicz OC, Taylor RL (1989) The finite element method. Vol 1, Basic formulation and linear problems. McGraw-Hill Book Company, London, pp 648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippi, U., Nachtigall, W. Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116, 35–50 (1996). https://doi.org/10.1007/BF02526927

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02526927

Keywords

Navigation