Skip to main content
Log in

A pAO1-encoded molybdopterin cofactor gene (moaA) ofArthrobacter nicotinovorans: characterization and site-directed mutagenesis of the encoded protein

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A gene homologous tomoaA, the gene responsible for the expression of a protein involved in an early step in the synthesis of the molybdopterin cofactor ofEscherichia coli, was found to be located 2.7-kb upstream of the nicotine dehydrogenase (ndh) operon on the catabolic plasmid pAO1 ofArthrobacter nicotinovorans. The MoaA protein, containing 354 amino acids, migrated on an SDS-polyacrylamide gel with an apparent molecular weight of 40,000, in good agreement with the predicted molecular weight of 38,880. The pAO1-encodedmoaA gene fromA. nicotinovorans was expressed inE. coli as an active protein that functionally complementedmoaA mutants. Its reduced amino acid sequence shows 43% identity to theE. coli MoaA, 44% to the NarAB gene product fromBacillus subtilis, and 42% to the gene product of two contiguous ORFs fromMethanobacterium formicicum. N-terminal sequences, including the motif CxxxCxYC, are conserved among the MoaA and NarAB proteins. This motif is also present in proteins involved in PQQ cofactor synthesis in almost all the NifB proteins reported so far and in thefixZ gene product fromRhizobium leguminosarum. Mutagenesis of any of these three conserved cysteine residues to serine abolished the biological activity of MoaA, while substitution of the tyrosine by either serine, phenylalanine, or alanine did not alter the capacity of the protein to complement themoaA mutation inE. coli. A second Cys-rich domain with the motif FCxxC(13x)C is found close to the C-terminus of MoaA and NarAB proteins. These two Cys-rich sequences may be involved in the coordination of a metal ions. The pAO1 copy ofmoaA may not be unique in theA. nicotinovorans genome since the molybdopterin cofactor oxidation products were detected in cell extracts from a plasmidless strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FDH :

Formate dehydrogenase

GST :

Glutathione S-transferase

IPTG :

Isopropyl-β-d-thiogalactopyranoside

MPT :

Molybdopterin cofactor

NDH :

Nicotine dehydrogenase

NR :

Nitrate reductase

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Bernauer H, Mauch L, Brandsch R (1992) Interaction of the regulatory protein NicR1 with the promoter region of the pAO1-encoded 6-hydroxy-d-nicotine oxidase gene ofArthrobacter oxidans. Mol Microbiol 6:1809–1820

    Article  PubMed  CAS  Google Scholar 

  • Biukema WJ, Klingensmith JA, Gibbons SL, Ausubel FM (1987) Conservation of structure and location ofRhizobium meliloti andKlebsiella pneumoniae nifB genes. J Bacteriol 169: 1120–1126

    Google Scholar 

  • Brandsch R, Decker K (1984) Isolation and partial characterisation of plasmid DNA fromArthrobacter oxidans. Arch Microbiol 138:15–17

    Article  PubMed  CAS  Google Scholar 

  • Dean DR, Bolin JT, Zheng L (1993) Nitrogenase metalloclusters: structures, organization, and synthesis. J Bacteriol 175:6737–6744

    PubMed  CAS  Google Scholar 

  • Eberwein H, Gries FA, Decker K (1961) 1. Über den Abbau des Nicotins durch Bakterienenzyme. 2. Isolierung und Charakterisierung eines Nicotinabbauenden Bodenbakteriums. Z Physiol Chem 323:236–248

    CAS  Google Scholar 

  • Evans D, Jones R, Woodley P, Robson R (1988) Further analysis of nitrogen fixation (nif) genes inAzotobacter chroococcum: identification and expression inKlebsiella pneumoniae ofnifS, nifV, nifM andnifB genes. J Gen Microbiol 134:931–942

    PubMed  CAS  Google Scholar 

  • Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187

    Article  PubMed  CAS  Google Scholar 

  • Glaser JH, DeMoss JA (1972) Comparison of nitrate reductase mutants ofEscherichia coli selected by alternative procedures. Mol Gen Genet 116:1–10

    Article  PubMed  CAS  Google Scholar 

  • Goosen N, Horsman HPA, Huinen RGM, Van de Putte P (1989)Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression inEscherichia coli K-12. J Bacteriol 171: 47–455

    Google Scholar 

  • Grether-Beck S, Igloi GL, Pust S, Schilz E, Decker K, Brandsch R (1994) Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes ofArthrobacter nicotinovorans. Mol Microbiol 13:929–936

    Article  PubMed  CAS  Google Scholar 

  • Gronger P, Manian SS, Reilander H, O'Connell M, Priefer UB, Pühler A (1987) Organization and partial sequence of a DNA region of theRhizobium leguminosarum symbiotic plasmid pRL6LI containing the genesfixABC, nifA, nifB, and a novel open reading frame. Nucleic Acids Res 15:31–49

    PubMed  CAS  Google Scholar 

  • Igloi GL, Schiefermayr E (1993) Enzymatic addition of fluorescein-or biotin-riboUTP to oligonucleotides results in primers suitable for DNA sequencing and PCR. Biotechniques 15: 486–497

    PubMed  CAS  Google Scholar 

  • Irby RB, Adair WL (1994) Intermediates in the folic acid biosynthetic pathways are incorporated into molybdopterin the yeast,Pichia canadensis. J Biol Chem 269:23981–23987

    PubMed  CAS  Google Scholar 

  • Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of thenifB-nifQ region fromAzotobacter vinelandii. J Bacteriol 170:1475–1487

    PubMed  CAS  Google Scholar 

  • Johann S, Hinton SM (1987) Cloning and nucleotide sequence of thechlD locus. J Bacteriol 169:1911–1916

    PubMed  CAS  Google Scholar 

  • Johnson JL, Indermaur LW, Rajagopalan KV (1991) Molybdenum cofactor synthesis inEscherichia coli. Requirement of thechlB gene product for the formation of the guanine dinucleotide. J Biol Chem 266:12140–12145

    PubMed  CAS  Google Scholar 

  • Kim YM, Ahn KJ, Beppu T, Uozumi T (1986) Nucleotide sequence of thenifLA operon ofKlebsiella oxytoca NG13 and characterization of the gene products. Mol Gen Genet 205: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Klinman JP, Mu D (1994) Quinoenzymes in biology. Annu Rev Biochem 63:299–344

    Article  PubMed  CAS  Google Scholar 

  • Kraut M, Meyer O (1988) Plasmids in carboxydotropic bacteria: physical and restriction analysis. Arch Microbiol 149:540–546

    Article  CAS  Google Scholar 

  • Kretzer A, Frunzke K, Andreesen JR (1993) Catabolism of isonicotinate byMycobacterïum sp. INA1: extended description of the pathway and purification of the molybdoenzyme isonicotinate dehydrogenase. J Gen Microbiol 139:2763–2772

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of anErwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization inEscherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    PubMed  CAS  Google Scholar 

  • Luque, F, Mitchenall LA, Chapman M, Christine R, Pau RN (1993) Characterization of genes involved in molybdenum transport inAzotobacter vinelandii. Mol Microbiol 7:447–459

    Article  PubMed  CAS  Google Scholar 

  • Mandrand-Berthelot MA, Wee MYK, Haddock BA (1978) An improved method for the identification and characterization of mutants ofEscherichia coli deficient in formate dehydrogenase activity. FEMS Microb Lett 4:37–40

    Article  CAS  Google Scholar 

  • Masepohl P, Klipp W, Pühler A (1988) Genetic characterization and sequence analysis of the duplicatednifA/nifB gene region ofRhodobacter capsulatus. Mol Gen Genet 212:27–37

    Article  PubMed  CAS  Google Scholar 

  • Mauch L, Bichler V, Brandsch R (1990) Functional analysis of the 5′-regulatory region and the UUG translation initiation codon of theArthrobacter oxidans 6-hydroxy-d-nicotine oxidase gene. Mol Gen Genet 221:427–434

    Article  PubMed  CAS  Google Scholar 

  • Meulenberg JJM, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of theKlebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294

    PubMed  CAS  Google Scholar 

  • Mulligan ME, Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacteriumAnabaena species strain PCC7120. ThenifB-fdxN-nifS-nifU operon. J Biol Chem 264:19200–19207

    PubMed  CAS  Google Scholar 

  • Nohno T, Kasai Y, Saito T (1988) Cloning and sequencing of theEscherichia coli chlEN operon involved in molybdopterin biosynthesis. J Bacteriol 170:4097–4102

    PubMed  CAS  Google Scholar 

  • Noti JD, Folkerts O, Turken AN, Szalay AA (1986) Organization and characterization of genes essential for symbiotic nitrogen fixation fromBradyrhizobium japonicum I110. J Bacteriol 167:774–783

    PubMed  CAS  Google Scholar 

  • O'Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725

    Article  PubMed  Google Scholar 

  • Palmer T, Vasishta A, Whitty PW, Boxer DH (1994) Isolation of protein FA, a product of themob locus required for molybdenum cofactor biosynthesis inEscherichia coli. Eur J Biochem 222:687–692

    Article  PubMed  CAS  Google Scholar 

  • Patel PS, Ferry J (1988) Characterization of the upstream region of the formate dehydrogenase operon ofMethanobacterium formicicum. J Bacteriol 170:3390–3395

    PubMed  CAS  Google Scholar 

  • Pitterle DM, Rajagopalan KV (1993) The biosynthesis of molybdopterin inEscherichia coli. J Biol Chem 268:13499–13505

    PubMed  CAS  Google Scholar 

  • Puig J (1967) Étude génétique et biochimique des mutants resistant au C103 (geneschlA, chlB, chlC) C R Acad Sci D 264: 1916–1918

    CAS  Google Scholar 

  • Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267:10199–10202

    PubMed  CAS  Google Scholar 

  • Rivers SL, McNairn E, Blasco F, Giordano G, Boxer DH (1993) Molecular genetic analysis of themoa operon ofEscherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol 8:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Rossen L, Ma QS, Mudd EA, Johnston AWB, Downie JA (1984) Identification and DNA sequence offixZ, anifB-like gene fromRhizobium leguminosarum. Nucleic Acids Res 12:7123–7134

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Allen JR, Spangler NJ, Ludden PW (1994) In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NifB protein. J Biol Chem 269:1154–1158

    PubMed  CAS  Google Scholar 

  • Siegmund I, König K, Andreesen JR (1990) Molybdenum involvement in the aerobic degradation of picolinic acid byArthrobacter picolinophilus. FEMS Microb Lett 67:281–284

    Article  CAS  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed inEscherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  PubMed  CAS  Google Scholar 

  • Souza EM, Funayama S, Rigo LU, Yates MG, Pedrosa FO (1991) Sequence and structural organization of anifA-like gene and part of anifB-like gene ofHerbaspirillum seropedicae strain Z78. J Gen Microbiol 137:1511–1522

    PubMed  CAS  Google Scholar 

  • Stewart V, MacGregor CH (1982) Nitrate reductase inEscherichia coli K-12: role ofchlC, chlE, andchlG loci. J Bacteriol 151: 788–799

    PubMed  CAS  Google Scholar 

  • Wang G, Angermüller S, Klipp W (1993) Characterization ofRhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175:3031–3042

    PubMed  CAS  Google Scholar 

  • White WB, Ferry JG (1992) Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of thefdhC gene ofMethanobacterium formicicum. J Bacteriol 174: 4997–5004

    PubMed  CAS  Google Scholar 

  • Wuebbens MM, Rajagopalan KV (1993) Structural characterization of a molybdopterin precursor. J Biol Chem 268:13493–13498

    PubMed  CAS  Google Scholar 

  • Yanish-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich Brandsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, C., Igloi, G., Henninger, H. et al. A pAO1-encoded molybdopterin cofactor gene (moaA) ofArthrobacter nicotinovorans: characterization and site-directed mutagenesis of the encoded protein. Arch. Microbiol. 164, 142–151 (1995). https://doi.org/10.1007/BF02525320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525320

Key words

Navigation