Skip to main content
Log in

Analysis of flow in coronary epicardial arterial tree and intramyocardial circulation

  • Blood Flow
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A mathematical model combining the coronary flow in the epicardial arterial tree and the intramyocardial circulation is presented. The epicardial arterial tree is represented by a resistive capacitive network based on its realistic anatomy. The intramyocardial flow is affected by the pump action of the contracting myocardium through the extravascular compressive pressure (ECP), which, in turn, affects the dynamic resistance and compliance changes based on the relationship between the transmular pressure and the cross-sectional area of a vessel. The model accounts for the autoregulatory mechanism of the intramyocardial compartments (arteriolar, microvascular and venular) and is structured according to the epicardial coronary anatomy. Realistic coronary epicardial arterial flow patterns are obtained, which compare well to experimentally measured data in six dogs under basal conditions and during reactive hyperemic response. Simulations of the average transmural flow in the three intramyocardial vascular compartments show that the flow in the arterial side is predominantly diastolic, with a systolic retrograde component, and is dominantly systolic antegrade flow in the venular side, consistent with experimental data. Interestingly, the transmurally average microcirculatory flow is continuous, with very small change throughout the cardiac cycle, and is practically insensitive to changes in the model parameters. The model presents a quantitative tool that describes the dynamic pattern of coronary flow in relationship to muscular and extravascular parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armour, J. A., andRandall, W. C. (1971): ‘Canine left venticular intramyocardial pressures’,Amer. J. Physiol.,220, pp. 1833–1839

    Google Scholar 

  • Baez, S., Lamport, H., andBaez, A. (1960):in ‘Flow properties of blood and other biological systems’ (Pergamon Press, Oxford) pp. 122–136

    Google Scholar 

  • Baim, D. S., andGrossman, W. (1986): ‘Cardiac catheterization and angiography’ (Lea and Febiger, Philadelphia)

    Google Scholar 

  • Baird, R. J., Goldbach, M. M., andDe La Rocha, A. (1970): ‘Intramyocardial pressure, the persistence of its transmural gradients in the empty heart and its relationship to myocardial oxygen consumption’,J. Thorac. Cardiovasc. Surg., 359, pp. 810–823

    Google Scholar 

  • Best, C. H., andTaylor, N. B. (1966): ‘The coronary circulation’,in ‘The physiological basis of medical practice’ (Williams & Wilkins, Baltimore) Chap. 45, pp. 813–819

    Google Scholar 

  • Beyar, R., Guerci, A. D., Halperin, H. R., Tsitlik, J. E., andWeisfeldt, M. L. (1989): ‘Intermittent coronary sinus occlusion following coronary arterial ligation results in venous retroperfusion’,Circ. Res.,65, pp. 695–707

    Google Scholar 

  • Beyar, R., Kamminker, R., Manor, D., Ben Ari, R., andSideman, S. (1991): ‘On the mechanism of transmural myocardial compression and perfusion’in Sideman, S., Beyar, R., andKleber, A. G. (Eds.), ‘Cardiac electrophysiology, circulation and transport’ (Kluwer Academic Publishers, Springfield) pp. 245–258

    Google Scholar 

  • Beyar, R., andSideman, S. (1987): ‘Time dependent coronary blood flow distribution in left ventricular wall’,Amer. J. Physiol.,252, pp. H417-H433

    Google Scholar 

  • Bruinsma, P., Arts, T., Dankelman, J., andSpaan, J. A. E. (1988): ‘Model of the coronary circulation based on pressure dependence of coronary resistance and capacitance’,Basic Res. Cardiol.,83, pp. 510–524

    Article  Google Scholar 

  • Burattini, R., Sipkema, P., Van Huis, G., andWesterhof, N. (1985): ‘Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model’,Ann. Biomed. Eng.,13, pp. 385–404

    Article  Google Scholar 

  • Canty, J. M., Klocke, F. J., andMates, R. E. (1982): ‘Influences of vasomotor tone and coronary pressure on coronary capacitance’,Circ., Suppl II 66, pp. II-42

    Google Scholar 

  • Chadwick, R. S. (1982): ‘Mechanics of the left ventricle’,Biophys. J.,39, pp. 279–288

    Article  Google Scholar 

  • Chadwick, R. S., Tedgui, A., Michel, J. B., Ohayon, J., andLevy (1990): ‘Phasic regional myocardial inflow and outflow: comparison of theory and experiments’,Amer. J. Physiol.,258, pp. H1687-H1698

    Google Scholar 

  • Chilian, W. M., Layne, S. M., Klausner, E. C., Eastham, C. L., andMarcus, M. L. (1989): ‘Redistribution of coronary microvascular resistance produced by dipyridamole’,ibid.,,258, pp. H383-H390

    Google Scholar 

  • Chilian, W. M., andMarcus, M. L. (1982): ‘Phasic coronary blood flow velocity in intramural and epicardial coronary arteries’,Circ. Res.,50, pp. 775–781

    Google Scholar 

  • Chilian, W. M., andMarcus, M. L. (1984): ‘Coronary venous outflow persists after cessation of coronary arterial inflow’,Amer. J. Physiol.,247, pp. H984-H990

    Google Scholar 

  • Cox, R. H. (1975): ‘Pressure dependence of the mechanical properties of arteries in vivo’,ibid.,,229, pp. 1371–1375

    Google Scholar 

  • Dinnar, U. (1981): ‘Cardiovascular fluid dynamics’ (CRC Press, Boca Raton, Florida)

    MATH  Google Scholar 

  • Dobrin, P. B., andRovick, A. A. (1969): ‘Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries’,Amer. J. Physiol.,217, pp. 1644–1651

    Google Scholar 

  • Doucette, J. W., Goto, M., Flynn, A. E., Husseini, W. K. andHoffmann, J. I. E. (1990): ‘Effects of left ventricular pressure and myocardial contraction on coronary flow’,Circ. (abstracts of the 63rd Scientific Sessions), pp. III-379

  • Downey, J. M., andKirk, E. S. (1975): ‘Inhibition of coronary blood flow by a vascular waterfall mechanism’,Circ. Res.,36, pp. 753–760

    Google Scholar 

  • Fung, Y.: ‘Biomechanics: mechanical properties of living tissues’, (New York, Springer Verlag, 1981) pp. 284–286

    Google Scholar 

  • Gore, R. W. (1974): ‘Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure’,Circ. Res.,34, pp. 581–591

    Google Scholar 

  • Gow, B. S., andHadfield, C. D. (1979): ‘The elasticity of canine and human coronary arteries with reference to postmortem changes’,-ibid.,,45, pp. 588–594

    Google Scholar 

  • Gow, B. S., Schonfeld, D., andPatel, D. J. (1974): ‘The dynamic elastic properties of the canine left circumflex coronary artery’,J. Biomech.,7, pp. 389–395

    Article  Google Scholar 

  • Halon, D., Sapoznikov, D., Lewis, B., andGotsman, M. (1983): ‘Localization of lesions in the coronary circulation’,Amer. J. Cardiol.,52, pp. 921–926

    Article  Google Scholar 

  • Heinman, F. W., andGrayson, J. (1985): ‘Transmural distribution of intermyocardial pressure measured by micropipette technique’,Amer. J. Physiol.,249, pp. H1216-H1223

    Google Scholar 

  • Hoffman, J. I. E., andSpaan, J. A. E. (1990): ‘Pressure-flow relations in coronary circulation’,Physiolog. Rev.,70, pp. 331–390

    Google Scholar 

  • Kajiya, F., Tomonaga, G., Tsujiooka, K., andOgasawara, Y. (1985): ‘Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method’,J. Biomech. Eng.,107, pp. 10–15

    Article  Google Scholar 

  • Kass, D. A., Beyar, R., Lankford, E., Heard, M., Maughan, W. L., Weisfeldt, M. L., andSagawa, K. (1989): ‘Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations’,Circ.,79, pp. 167–178

    Google Scholar 

  • Kirk, E. S., andHonig, C. R. (1964): ‘An experimental and theoretical analysis of myocardial tissue pressure’,Amer. J. Physiol.,207, pp. 361–367

    Google Scholar 

  • Klocke, F. J., andEllis, A. K. (1980): ‘Control of coronary blood flow’,Ann. Rev. Med.,31, pp. 489–509

    Article  Google Scholar 

  • Krams, R., Sipkema, P., Zegers, J., andWesterhof, N. (1989): ‘Contractility is the main determinant of coronary systolic flow impediment’,Amer. J. Physiol.,257, pp. H1936–1944

    Google Scholar 

  • Kresh, J. Y., Fox, M., Brockman, S. K., andNoorderfraaf, A. (1990): ‘Model-based analysis of transmural vessel impedance and myocardial circulation dynamics’,ibid.,,258, pp. H262-H276

    Google Scholar 

  • Lee, J., Chambers, D. E., Akizuki, S., andDowney, J. M. (1984): ‘The role of vascular capacitance in the coronary arteries’,Circ. Res.,55, pp. 751–762

    Google Scholar 

  • Lowensohn, H. S., Khouri, E. M., Gregg, D. E., Pyle, R. L., andPatterson, R. E. (1976): ‘Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures’,-ibid.,,39, pp. 760–766

    Google Scholar 

  • Marcus, M. L. (1983). ‘The coronary circulation in health and disease’ (McGraw-Hill, New York)

    Google Scholar 

  • Panerai, R. B., Chamberlain, J. H., andSayers, B. (1979): ‘Characterization of the extravascular component of coronary resistance by instantaneous pressure-flow relationships in the dog’,Circ. Res.,45, pp. 378–389

    Google Scholar 

  • Rooz, E., Wiesner, T. F., andNerem, R. M. (1985): ‘Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses)—‘I: model and numerical method’,J. Biomech. Eng.,197, pp. 361–367

    Article  Google Scholar 

  • Rumberger, J. A., andNerem, R. M. (1977): ‘A method of characteristics calculation of coronary blood flow’,J. Fluid Mech.,82, pp. 429–448

    Article  MATH  Google Scholar 

  • Scharf, S. M., andBrinberger-Barnea, B. (1973): ‘Influence of coronary flow and pressure on cardiac function and coronary vascular volume’,Amer. J. Physiol.,224, pp. 918–925

    Google Scholar 

  • Sethna, D. H., andMoffitt, E. A. (1986): ‘An appreciation of the coronary circulation’,Anesth. Analg.,65, pp. 294–305

    Article  Google Scholar 

  • Sipkema, P., andWesterhof, N. (1989): ‘Mechanics of a thin walled collapsible microtube’,Ann. Biomed. Eng.,17, pp. 203–217

    Article  Google Scholar 

  • Spaan, J. A. E. (1985): ‘Coronary diastolic pressure flow relation and zero flow pressure explained on the basis of intramyocardial complicance’,Circ. Res.,56, pp. 293–309

    Google Scholar 

  • Spaan, J. A. E., Breuls, N. P. W., andLaird, J. D. (1981): ‘Diastolic systolic coronary flow differences are caused by intramyocardial pump action in the anaesthetized dog’,-ibid.,,49, pp. 584–593

    Google Scholar 

  • Stein, P. D., Sabbah, H. N., Marzilli, M., andBlick, E. F. (1980): ‘Comparison of the distribution of intramyocardial pressure across the canine left venticular wall in the beating heart during distole and in the arrested heart’,-ibid.,,47, pp. 258–267

    Google Scholar 

  • Wang, J., Tie, B., Welkowitz, W., Kotis, J., andSemmlow, J. (1989): ‘Incremental network analogue model of the coronary artery’,Med. & Biol. Eng. & Comput.,27, pp. 416–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manor, D., Sideman, S., Dinnar, U. et al. Analysis of flow in coronary epicardial arterial tree and intramyocardial circulation. Med. Biol. Eng. Comput. 32 (Suppl 1), S133–S143 (1994). https://doi.org/10.1007/BF02523339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523339

Keywords

Navigation