Skip to main content
Log in

Pressure/flow behaviour in collapsible tube subjected to forced downstream pressure fluctuations

  • Biomedical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An experimental investigation has been made into the pressure/flow behaviour of a collapsible tube subjected to downstream pressure fluctuations. These downstream pressure waves are observed to be transmitted upstream beyond the point of collapse. The mean flow rate is not significantly affected by the amplitude or frequency of pressure fluctuations. However, the oscillatory flow amplitude is reduced at the higher frequency. The mean flow rate also remains independent of the mean driving pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

tube cross-section area

c :

wave speed

E :

modulus of elasticity of tube

f :

frequency of oscillating pressure

K p :

tube stiffness factor,Et 3/[12R 30 (1−μ2)]

L :

tube length

n :

tube law index

P :

static pressure in tube

Q :

flow rate

R :

inside radius of collapsible tube

Re :

Reynolds number

S :

speed ratio,u/c

t :

tube wall thickness

T :

time

Z :

characteristic impedance, ϱc 0/A0

α:

Womersley number,R√2πf/v

ϱ:

fluid density

μ:

Poisson ratio of tube material

ν:

fluid kinematic viscosity

1:

upstream

2:

downstream

e :

external

0:

condition at zero transmural pressure

t :

ampl/itude

−:

time-averaged values

References

  • Bertram, C. D. (1986): ‘Unsteady equilibrium behaviour in collapsible tubes’,J. Biomech.,19, pp. 61–69

    Article  Google Scholar 

  • Bertram, C. D., andPedley, T. J. (1982): ‘A mathematical model of unsteady collapsible tube behaviour’,J. Biomech.,15, pp. 39–50

    Article  Google Scholar 

  • Bertram, C. D., Raymond, C. J., andButcher, K. S. A. (1989): ‘Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff’,J. Biomech. Eng.,111, pp. 185–191

    Google Scholar 

  • Bertram, C. D., Raymond, C. J., andPedley, T. J. (1990): ‘Mapping of instabilities for flow through collapsed tubes of differing length’,J. Fluids Struct.,4, pp. 125–153

    Article  Google Scholar 

  • Cancelli, C., andPedley, T. J. (1985): ‘A separated-flow model for collapsible-tube oscillations’,J. Fluid Mech.,157, pp. 375–404

    Article  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., andSeed, W. A. (1978): ‘The mechanics of the circulation’ (Oxford University Press) pp. 57–60, 451

  • Conrad, W. A. (1969): ‘Pressure-flow relationships in collapsible tubes’,IEEE Trans.,BME-16, pp. 284–295

    Google Scholar 

  • Griffiths, D. J. (1977): ‘Oscillations in the outflow from a collapsible tube’,Med. Biol. Eng. Comput.,15, pp. 357–362

    Article  Google Scholar 

  • Grotberg, J. L., andReiss, E. L. (1984): ‘Subsonic flapping flutter’,J. Sound Vib.,92, pp. 349–361

    Article  MATH  Google Scholar 

  • Guyton, A. C. (1963): ‘Venous return’in Hamilton, W. F., andDow, P. (Eds.) Handbook of physiology: circulation’ (American Physiological Society) pp. 1099–1133

  • Jan, D. L., Kamm, R. D., andShapiro, A. H. (1983): ‘Filling of partially collapsed compliant tubes’,J. Biomech. Eng.,105, pp. 12–19

    Article  Google Scholar 

  • Jensen, O. E. (1992): ‘Choatic oscillations in a simple collapsible tube model’,J. Biomech. Eng.,114, pp. 55–59

    Google Scholar 

  • Kamm, R. D. (1982): ‘Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis—pt 1: numerical studies’,J. Biomech. Eng.,104, pp. 87–95

    Google Scholar 

  • Kamm, R. D. (1987): ‘Flow through collapsible tubes’in Skalak, R., andChien, S. (Eds.) ‘Handbook of bioengineering’ (McGraw-Hill) pp. 23.11–23.19

  • Kamm, R. D., andShapiro, A. H. (1979): ‘Unsteady flow in a collapsible tube subjected to external pressure or body forces’,J. Fluid Mech.,95, pp. 1–78

    Article  MATH  Google Scholar 

  • Kamm, R. D., andPedley, T. J. (1989): ‘Flow in collapsible tubes: a brief review’,J. Biomech. Eng.,11, pp. 177–179

    Google Scholar 

  • Low, H. T., andChew, Y. T. (1991): ‘Pressure/Flow relationships in collapsible tube: effects of upstream pressure fluctuation’,Med. Biol. Eng. Comput.,29, pp. 217–221

    Article  Google Scholar 

  • Ohba, K., Sakurai H., andOka, J. (1989): ‘Self-excited oscillation of flow in collapsible tube IV (Laser doppler measurement of local flow field)’. Technical Report, Kansai University,31, pp. 1–11

    Google Scholar 

  • Olson, D. A., Kamm, R. D., andShapiro, A. H. (1982): ‘Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis—pt 2: experimental studies on simulated leg’,J. Biomech. Eng.,104, pp. 96–104

    Article  Google Scholar 

  • Shapiro, A. H. (1977): ‘Steady flow in collapsible tubes’,J. Biomech. Eng.,99, pp. 126–147

    Google Scholar 

  • Shimizu, M. (1985): ‘Characteristics of pressure-wave propagation in a compliant tube with a fully collapsed segment’,J. Fluid Mech.,158, pp. 113–135

    Article  Google Scholar 

  • Shimizu, M. andTanida, Y. (1983): ‘On the mechanism of Korotkoff sound generation at diastole’,J. Fluid Mech.,127, pp. 315–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, H.T., Chew, Y.T., Winoto, S.H. et al. Pressure/flow behaviour in collapsible tube subjected to forced downstream pressure fluctuations. Med. Biol. Eng. Comput. 33, 545–550 (1995). https://doi.org/10.1007/BF02522512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522512

Keywords

Navigation