Skip to main content
Log in

Force—velocity relations of nine load-moving skeletal muscles

  • Biomedical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The relationship between maximal velocity and load was studied in nine muscles of the cat’s hind limb using a technique in which the initial and final muscle lengths are determined by equilibrium of a suspended mass and the muscle’s passive and active forces elicited by tetanic stimulation. The maximal veloities of shortening during contraction under each of various loads was used to fit a Hill model using the least-squares method. It was shown that different muscles varied significantly in their ability to generate maximal velocity over a range of loads. The tibialis anterior muscle generate the highest velocity (28·4 cms−1), whereas the tibialis posterior generated the lowest maximal velocity (4·2 cms−1). In general, muscles with predominantly fast twitch fibres and with the largest elongation/shortening range displaced the load at the highest velocities, as compared with muscles with predominantly slow twitch and short excursion range which respond with low velocities. The a/P0 ratio of Hill’s equation, which defines the curvature of the force velocity, also varied widely, being most monotonic (0·927) for the soleus and the steepest (0·067) for the extesor digitorum longus, further suggesting that fibre composition is also highly influential on the force—velocity relations of the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, B. C., andWilkie, D. R. (1953): ‘The relation between velocity of shortening and the tension—length curve of skeletal muscle’,J. Physiol.,120, pp. 214–223

    Google Scholar 

  • Ariano, M. A., Armstrong, R. B., andEdgerton, V. R. (1973): ‘Hindlimb muscle fiber populations of five mammals,’J. Histochem. Cytochem.,21, pp. 51–55

    Google Scholar 

  • Baratta, R., Zhou, B.-H., andSolomonow, M. (1989): ‘Frequency response model of skeletal muscle: effect of perturbation level and control strategy,Med. Biol. Eng. Comput.,27, pp. 337–345

    Article  Google Scholar 

  • Baratta, R. V., andSolomonow, M. (1990): ‘The dynamic response model of nine different skeletal muscles,’IEEE Trans. Biomed. Eng.,37, pp. 243–251

    Article  Google Scholar 

  • Baratta, R., andSolomonow, M. (1991): ‘Dynamic performance of a load-moving skeletal muscle’,J. Appl. Physiol.,71, pp. 749–757

    Google Scholar 

  • Baratta, R. V., andSolomonow, M. (1991): ‘The effect of tendon stiffness on the dynami performance of isometric muscle’,J. Biomech.,24, pp. 109–116

    Article  Google Scholar 

  • Baratta, R., andSolomonow, M. (1992): ‘The dynamic performance model of skeletal muscle,Crit. Rev. Biomed. Eng.,19, pp. 419–454

    Google Scholar 

  • Baratta, R. V., Solomonow, M., Best, R., andD’Ambrosia, R. (1993): ‘The isotonic length—force models of nine different skeletal muscles’,Med. Biol. Eng. Comput.,31, pp. 449–458

    Article  Google Scholar 

  • Blix, M. (1891): ‘Die Lange und die Spannung des Muskels,’Skand, Arch. Physiol.,3, pp. 295–318

    Google Scholar 

  • Claflin, D. R., andFaulkner, J. A. (1989): ‘The force—velocity relationship at high shortening velocities in the soleus muscle of the rat,’J. Physiol.,411, pp. 627–637

    Google Scholar 

  • Close, R. I. (1972): ‘Dyamic properties of mammalian skeletal muscles,’Physiol. Rev.,52, pp. 129–197

    Google Scholar 

  • Fenn, W. D., andMarsh, B. S. (1935): ‘Muscular force at different speeds of shortening,’S. Physiol.,85, pp. 277–297

    Google Scholar 

  • Gareis, H., Solomonow, M., Baratta, R. V., Best, R., andD’Ambrosia, R. (1992): ‘Isometric length—force models of nine different skeletal muscles’,J. Biomech.,25, pp. 903–916

    Article  Google Scholar 

  • Guyton, A. C. (1986) ‘Textbook of medical physiology’ (W. B. Saunders, Philadelphia, PA)

    Google Scholar 

  • Hatze, H. (1981): ‘Myocybernetic control models of skeletal muscle,’ University of South Africa, Pretoria

    MATH  Google Scholar 

  • Hill, A. V. (1938): ‘The heat of shortening and the dynamic constants of muscle,’Proc. Roy. Soc. London,126B, pp. 136–195

    Google Scholar 

  • Huijing, P. A. (1985): ‘Architecture of human gastrocnemius muscle and some functional consequences,’Acta. Anat.,123, pp. 101–107

    Google Scholar 

  • Huijing, P. A., Van Lookeren-Campagne, A. A. H. andKoper, J. F. (1988): ‘Muscle architecture and fiber characteristics of rat gastrocnemius and semimembranosus during contraction,Acta. Anat.,135, pp. 46–52.

    Article  Google Scholar 

  • Kralj, A., andBajd, T. (1989): ‘Functional electrical stimulation for standing and walking,’ (CRC Press, Boca-Raton, Fl)

    Google Scholar 

  • Marsolais, B., andEdwards, B. (1988): ‘Energy cost of walking and standing with functional electrical stimulation and long leg braces,’Arch. Phys. Med. Rehab.,69, pp. 243–249

    Google Scholar 

  • Peckham, H., andKeith, M. (1992): ‘Motor prostheses for restoration of upper extremity function,’in Stein, R., Peckham, H., andPopovic, D. (Eds.): ‘Neural prostheses’ (Oxford Press, NY)

    Google Scholar 

  • Ranatunga, K. W., andThomas, P. E. (1990): ‘Correlation between shortening velocity, force—velocity relation and histochemical fiber type composition in rat muscles’,J. Muscle Res. Cell. Motil.,11, pp. 240–250

    Article  Google Scholar 

  • Roeleveld, K., Baratta, R., Solomonow, M., VanSoest, A. G., andHuijing, P. (1993): ‘Role of tendon properties on the dynamic performance of different isometric muscles,’J. Appl. Physiol.,74, pp. 1348–1355

    Google Scholar 

  • Roeleveld, K., Baratta, R., Solomonow, M., Huijing, P. (1994) ‘Role of tendon in the dynamic performance of three load moving muscles,’Ann. Biomed. Eng.,22, pp. 682–691

    Article  Google Scholar 

  • Solomonow, M. (1984): ‘External control of the neuromuscular system,’IEEE Trans. Biomed. Eng.,31, pp. 752–763

    Google Scholar 

  • Solomonow, M. (1992): ‘Biomechanics and physiology of a practical functional neuromuscular stimulation powered walking orthosis for paraplegics,’in Stein, R., Peckham, H., Popovic, D., (Eds.): ‘Neural prostheses’ (Oxford Press, NY)

    Google Scholar 

  • Spector, S. A., Gardiner, P. F., Zernicke, R. F., Roy, R. R. andEdgerton, V. R. (1980): ‘Muscle architecture and force—velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control,’J. Neurophysical.,44, pp. 951–960

    Google Scholar 

  • Vance, T., Solomonow, M., Baratta, R., Best, R., andD’Abrosia, R. (1994): ‘Comparison of isometric and constant load length tension models of two different muscles,’IEEE Trans. Biomed. Eng.,41, pp. 771–781

    Article  Google Scholar 

  • Walmsley, B., Hodgson, J., andBurke, R. (1978): ‘Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats,’J. Neurophysiol.,41, pp. 1203–1216

    Google Scholar 

  • Wilkie, D. R. (1956): ‘The mechanical properties of muscle’,Br. Med. Bull.,12, pp. 177–182

    Google Scholar 

  • Woittiez, L. D., Huijing, P. A., andRozendal, R. H. (1983): ‘Influence of muscl architecture on the length—force diagram,’Pflügers Arch.,397, pp. 73–74

    Article  Google Scholar 

  • Young, R. P., Scott, S. H., Lloeb, G. E. (1992): ‘An intrinsic mechanism to stabilize positive-joint angle dependent moment arms of the feline ankle muscles,’Nerosc. Lett.,145, pp. 137–140

    Article  Google Scholar 

  • Zhou, B.-H., Baratta, R. V., Solomonow, M. (1987): ‘Manipulation of muscle force with various firing rate and recruitment control strategies,’IEEE Trans. Biomed. Eng.,34, pp. 128–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratta, R.V., Solomonow, M., Best, R. et al. Force—velocity relations of nine load-moving skeletal muscles. Med. Biol. Eng. Comput. 33, 537–544 (1995). https://doi.org/10.1007/BF02522511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522511

Keywords

Navigation