Skip to main content
Log in

Maximisation of perfusion systems and process comparison with batch-type cultures

Maximisation of perfusion cultures

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

A comparison of cell yields and monoclonal antibody productivity from the same hybridoma has been made in a wide range of cell bioreactors including both batch and continuous perfusion cultures. The most productive systems were based on porous microcarriers in fixed and fluidised beds which can be operated with a high degree of efficiency and reliability from the physico-chemical engineering point of view. Further improvements should be possible by improving the physiological environment in dense cell cultures, as indicated by the preliminary studies that are described. These include experimental data showing the relationship between monoclonal antibody production rates with glucose, glutamine, ammonia, and oxygen levels in microporous beads.

The results strongly indicate that perfusion processes that are scaleable in both volume and cell density can significantly reduce production costs. Manufacturers of biologicals from animal cells now have a choice between the proven batch-type processes and reliable perfusion systems based on microporous beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Griffiths JB (1988). Overview of cell culture systems and their scale-up. In: Animal Cell Biotechnology. Spier RE and Griffiths JB (eds) vol 3, Academic Press Ltd., London, pp. 179–220.

    Google Scholar 

  • Griffiths JB (1990). Animal cells—the breakthrough to a dominant technology. Cytotechnology 3: 109–116.

    Article  CAS  Google Scholar 

  • Griffiths JB (1991). Relative advantages of continuous versus batch processes. In: Animal Cell Culture and Production of Biologicals. Sasaki R and Ikura K (eds), Kluwer Academic Publishers, Dordrecht, pp. 401–410.

    Google Scholar 

  • Griffiths JB (1992a). Closing the culture gap. Bio/Technology 10: 30–32.

    Article  CAS  Google Scholar 

  • Griffiths, J.B. (1992b). Animal cell culture processes—batch or continuous. J. Biotechnol. 22: 21–30.

    Article  CAS  Google Scholar 

  • Griffiths JB (1992c). Alternative strategies to the scale-up of animal cells. Annual New York Academy of Science, (in press).

  • Lee GM, Varma A and Palsson BO (1991). Production of monoclonal antibody using free-suspended and immobilised hybridoma cells: effect of serum. Biotechnol. Bioeng. 38: 821–830.

    Article  CAS  Google Scholar 

  • Looby D and Griffiths JB (1988). Fixed bed porous glass sphere (porosphere) bioreactors for animal cells. Cytotechnology 1: 339–346.

    Article  Google Scholar 

  • Looby D, Racher A and Griffiths JB (1992). Productivity of a hybridoma cell line in a range of suspension and immobilised culture systems. In: Animal Cell Technology: Developments, Processes and Products. Spier RE, Griffiths JB and MacDonald C (eds), Butterworths, Oxford, (in press).

    Google Scholar 

  • Lullau E, Dreisbach C, Grogg A, Biselli M and Wandrey C (1992). Immobilisation of animal cells on chemically modified Siran carrier.ibid..

    Google Scholar 

  • Miller WM and Blanch HW (1991). Regulation of animal cell metabolism in bioreactors. In: Animal Cell Bioreactors. Ho CS and Wang DIC (eds), Butterworth-Heinemann, Stoneham, pp. 119–161.

    Google Scholar 

  • Racher AJ, Looby D and Griffiths JB (1990a). Studies on monoclonal antibody production by a hybridoma cell line (C1E3) immobilised in a fixed bed, porosphere culture system. J. Biotechnol. 15: 129–146.

    Article  CAS  Google Scholar 

  • Racher AJ, Looby D and Griffiths JB (1990b). Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology 3: 301–307.

    Article  CAS  Google Scholar 

  • Racher AJ, Looby D. and Griffiths JB (1992). Influence of ammonium ion and glucose on mAb production in suspension and fixed bed hybridoma cultures. J. Biotechnol. (in press).

  • Suzuki E and Ollis DF (1990). Enhanced antibody production at slowed growth rate: experimental demonstration and a simple structured model. Biotechnol. Prog. 6: 231–236.

    Article  CAS  Google Scholar 

  • Vournakis JN and Runstadler PW (1989). Microenvironment: the key to improved cell products. Bio/Technology 7: 143–145.

    Article  CAS  Google Scholar 

  • Wright JP and Balfor AH (1983). Monoclonal antibodies to Toxoplasma gondii. Parasitology 87: LXVI.

    Google Scholar 

  • Young MW and Dean RC (1987). Optimization of mammalian cell bioreactors. Bio/Technology 5: 835–837.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, J.B., Looby, D. & Racher, A.J. Maximisation of perfusion systems and process comparison with batch-type cultures. Cytotechnology 9, 3–9 (1992). https://doi.org/10.1007/BF02521726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02521726

Key words

Navigation