Skip to main content
Log in

The Bruns formula in three dimensions

  • Published:
Bulletin Géodésique Aims and scope Submit manuscript

Abstract

The Bruns formula is generalized to three dimensions with the derivation of equations expressing the height anomaly vector or the geoid undulation vector as a function of the disturbing gravity potential and its spatial derivatives. It is shown that the usual scalar Bruns formula provides not the separation along the normal to the reference ellipsoid but the component of the relevant spatial separation along the local direction of normal gravity. The above results which hold for any type of normal potential are specialized for the usual Somigliana-Pizzetti normal field so that the components of the geoid undulation vector are expressed as functions of the parameters of the reference ellipsoid, the disturbing potential and its spatial derivatives with respect to three types of curvilinear coordinates, ellipsoidal, geodetic and spherical. Finally the components of the geoid undulation vector are related to the deflections of the vertical in a spherical approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. BLAHA: “Second-Order Derivatives in a Local Frame Developed in Spheroidal and Spherical Coordinates”. Bull. Géod., Vol.54, No. 1, pp. 119–135 (1980).

    Article  Google Scholar 

  • F. BOCCHIO: “First-Order Numerical Computations of the Three-Dimensional Ellipsoidal Field”. Geophys. J. R. astr. Soc., Vol.49, pp. 633–644 (1977).

    Article  Google Scholar 

  • A. BODE and E. GRAFAREND: “The spacelike Molodenski problem including the rotational term of the gravity potential”. Manus. Geod., Vol.6, No. 1, pp. 33–61 (1981).

    Google Scholar 

  • K. DANAS and A. DERMANIS: “Numerical Realization of Isoparametric Telluroid Mapping”. Quater. Geod., Vol.4, No. 2, pp. 149–168 (1983).

    Google Scholar 

  • A. DERMANIS: “The Geodetic Boundary Value Problem Linearized with Respect to the Somigliana-Pizzetti Normal Field”. Manus. Geod., Vol.9, No. 2, pp. 77–92 (1984).

    Google Scholar 

  • A. DERMANIS and E. LIVIERATOS: “Deformation Analysis of Isoparametric Telluroid Mappings”. Boll. di Geod. e Sci. Affini, Vol.43, No. 4, pp. 301–312 (1984).

    Google Scholar 

  • E. GRAFAREND: “The definition of the Telluroid”. Bull. Géod., Vol.52, No. 1, pp. 25–38 (1978a).

    Article  Google Scholar 

  • E. GRAFAREND: “Dreidimensionale geodätische Abbildungsgleichungen und die Näherungsfigur der Erde”, ZfV, Vol.103, pp. 132–140 (1978b).

    Google Scholar 

  • E. GRAFAREND: “The Bruns Transformation and a Dual Setup of Geodetic Observational Equations”. NOAA Tech. Rep. NOS 85 NGS 16 (1980).

  • E. GRAFAREND: “Spacetime telluroid versus spacetime geoid or the Bruns-Love dialogue”. Commemorative volume on the occasion of Erik Tengström's 70th birthday, Report No. 19, Department of Geodesy, Uppsala University, pp. 105–127 (1983).

  • E. GRAFAREND, B. HECK and E.H. KNICKMEYER: “The free versus fixed geodetic boundary value problem for different combinations of geodetic observables”. Bull. Géod., Vol.59, No. 1, pp. 11–32 (1985).

    Article  Google Scholar 

  • H. GUGGENHEIMER: “Differential Geometry”. Mc Graw-Hill, (1963), Dover reprint, 1981.

  • W. HEISKANEN and H. MORITZ: “Physical Geodesy”. Freeman Publ. Co., San Francisco (1967).

    Google Scholar 

  • M. HOTINE. “Mathematical Geodesy”. ESSA Monograph No. 2, U.S. Dept. of Commerce Washington D.C. (1969).

    Google Scholar 

  • T. KRARUP. “Letters on Molodensky's Problem I–IV”. Communications to the members of IAG Special Study Group 4.31. Unpublished. (1973).

  • E.H. KNICKMEYER: “Eine approximative Lösung der allgemeinen linearen Geodätischen Randwertaufgabe durch Reihenentwicklungen nach Kugelfunktionen”. Deutsche Geod. Komm, Reihe C, Heft Nr. 304 (1984).

  • E.H. KNICKMEYER: “Eine Lösung der Grundgleichung der Physikalischen Geodäsie für beliebege Ränder und Normalfelder durch Kugelfunktionsentwicklungen”. ZfV, Vol.111, pp. 70–82 (1986).

    Google Scholar 

  • A. MARUSSI: “Principi di Geodesia intrinseca applicati al campo di Somigliana”. Boll. di Geod. e Sci. Affini, Vol.2, pp. 1–8 (1950). English translation in Marussi (1985).

    Google Scholar 

  • A. MARUSSI: “Fondamenti di Geodesia Intrinseca”. Comm. Geod. Italiana, Memorie No. 7. (1951). English translation in Marussi (1985).

  • A. MARUSSI: “Intrinsic Geodesy”. Springer Verlag (1985).

  • H. MORITZ: “Advanced Physical Geodesy”. Wichmann Verlag, Karlsruhe (1980).

    Google Scholar 

  • F. SANSÒ: “Dual relations in geometry and gravity space”. ZfV, Vol.105 pp. 279–290 (1980).

    Google Scholar 

  • F. SANSÒ: “Recent advances in the theory of the geodetic boundary value problem”. Reviews of Geophysics and Space Physics, Vol.19, pp. 437–449 (1981).

    Article  Google Scholar 

  • C.C. TSCHERNING: “Computation of the Second-Order Derivatives of the Normal Potential Based on the Representation by a Legendre Series”. Manus. Geod., Vol.1, No. 1, pp. 71–92 (1976a).

    Google Scholar 

  • C.C. TSCHERNING: “On the Chain-Rule Method for Computing Potential Derivatives”. Manuscr. Geod., Vol.1, No. 2, pp. 125–141 (1976b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermanis, A. The Bruns formula in three dimensions. Bull. Geodesique 61, 297–309 (1987). https://doi.org/10.1007/BF02520556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520556

Keywords

Navigation