Skip to main content
Log in

Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A new mathematical model for evaluation of the third-order (disturbing) gravitational tensor is formulated in this article. Firstly, we construct corresponding differential operators for the components of the third-order (disturbing) gravitational tensor in a spherical local north-oriented frame. We show that the differential operators may efficiently be decomposed into an azimuthal and an isotropic part. The differential operators are even more simplified for a certain class of isotropic kernels. Secondly, the differential operators are applied to the well-known integrals of Newton, Abel-Poisson, Pizzetti and Hotine. In this way, 40 new integral formulas are derived. The new integral formulas allow for evaluation of the components of the third-order (disturbing) gravitational tensor from density distribution, disturbing gravitational potential, gravity anomalies and gravity disturbances. Thirdly, we investigate the behaviour of the corresponding integral kernels in the spatial domain. The new mathematical formulas extend the theoretical apparatus of geodesy, i.e. the well-known Meissl scheme, and reveal important properties of the third-order gravitational tensor. They may be exploited in geophysical studies, continuation of gravitational field quantities and analysing the gradiometric-geodynamic boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman E-SM, El-Araby HM, El-Araby TM, Abo-Ezz ER (2003) A least-squares derivatives analysis of gravity anomalies due to faulted thin slabs. Geophysics 68:535–543

    Article  Google Scholar 

  • Albertella A, Migliaccio F, Sansó F, Tscherning CC (2000) The space-wise approach—overall scientific data strategy. In: Sünkel H (ed) From Eötvös to Milligal, Final Report, ESA Study, ESA/ESTEC Contract No 13329/98/NL/GD, pp 267–298

  • Ardalan AA, Grafarend EW (2001) Ellipsoidal geoidal undulations (ellipsoidal Bruns formula). J Geod 75:544–552

    Article  Google Scholar 

  • Arfken G (1968) Mathematical methods for physicists. Academic Press, New York

    Google Scholar 

  • Balakin AB, Daishev RA, Murzakhanov ZG, Skochilov AF (1997) Laser-interferometric detector of the first, second and third derivatives of the potential of the Earth gravitational field. Izvestiya vysshikh uchebnykh zavedenii, seriya Geologiya i Razvedka 1:101–107

    Google Scholar 

  • Beiki M (2010) Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75:159–174

    Google Scholar 

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geod 79:300–330

    Article  Google Scholar 

  • Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA—novelties and benefit. Geotechnologien, Science Report, No 17, Potsdam, Germany, pp 134–139

  • Casotto S, Fantino E (2009) Gravitational gradients by tensor analysis with application to spherical coordinates. J Geod 83:621–634

    Article  Google Scholar 

  • Chelton DB, Ries JC, Haines BJ, Fu L-L, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and earth sciences: a handbook of techniques and applications. International geophysics series, vol 69. Academic Press, San Diego, pp 1–131

  • Csapó G, Égetö C, Laky S, Tóth G, Ultmann Z, Völgyesi L (2009) Test measurements by Eötvös torsion balance and gravimeters. Civ Eng 53(2):75–80

    Google Scholar 

  • Cunningham L (1970) On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite. Celest Mech 2:207–216

    Article  Google Scholar 

  • Eppelbaum LV (2011) Review of environmental and geological microgravity applications and feasibility of its employment at archaeological sites in Israel. Int J Geophys 2011:1–9

  • ESA (1999) Gravity field and steady-state ocean circulation mission. ESA SP-1233(1), Report for Mission Selection of the Four Candidate Earth Explorer Missions, ESA Publication Division

  • Fantino E, Casotto S (2009) Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients. J Geod 83:595–619

    Article  Google Scholar 

  • Fedi M, Florio G (2001) Detection of potential field source boundaries by enhanced horizontal derivative method. Geophys Prospect 49:40–58

    Article  Google Scholar 

  • Forsberg R, Olesen AV (2010) Airborne gravity field determination. In: Xu G (ed) Sciences of geodesy-I: advances and future directions. Springer, Berlin, pp 83–104

    Chapter  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin

  • Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: II first-, second-, and third-order derivatives. J Geod 86:1019–1028

    Article  Google Scholar 

  • Fukushima T (2013) Recursive computation of oblate spheroidal harmonics of the second kind and their first-, second-, and third-order derivatives. J Geod 87:303–309

    Article  Google Scholar 

  • Grafarend EW (1997) Field lines of gravity, their curvature and torsion, the Lagrangian and the Hamilton equations of the plumbline. Annali di Geofisica 40:1233–1247

    Google Scholar 

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem—vertical deflections and geoid undulations—the completed Meissl diagram. J Geod 75:363–390

  • Hafez M, El-Qady G, Awad S, Elsayed E-S (2006) Higher derivative analysis for the interpretation of self-potential profiles at southern part of Nile delta, Egypt. Arab J Sci Eng 31:129–145

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco

    Google Scholar 

  • Hotine M (1969) Mathematical geodesy. ESSA Monograph No 2, US Department of Commerce, Washington, DC, USA

  • Jacoby W, Smilde PL (2009) Gravity interpretation: fundamentals and application of gravity inversion. Springer, Berlin

    Google Scholar 

  • Jordan MJT, Thompson KC, Collins MA (1995) The utility of higher order derivatives in constructing molecular potential energy surfaces by interpolation. J Chem Phys 103:9669–9675

    Article  Google Scholar 

  • Keller W, Sharifi MA (2005) Satellite gradiometry using a satellite pair. J Geod 78:544–557

    Article  Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Dover Publications, New York

    Book  Google Scholar 

  • Klees R (1996) Numerical calculation of weakly singular surface integrals. J Geod 70:781–797

    Article  Google Scholar 

  • Klees R, Lehmann R (1998) Calculation of strongly singular and hypersingular surface integrals. J Geod 72:530–546

    Article  Google Scholar 

  • Klokočník J, Kostelecký J, Pešek I, Novák P, Wagner CA, Sebera J (2010) Candidates for multiple impact craters: popigai and chicxulub as seen by EGM08, a global 5’ \(\times \) 5’ gravitational model. Solid Earth Discuss 2:69–103

    Article  Google Scholar 

  • Koop R (1993) Global gravity field modelling using satellite gravity gradiometry. Publications on Geodesy, Netherlands Geodetic Commission, No 38, Delft, The Netherlands

  • Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid. Lecture notes in earth sciences, vol 73. Springer, Berlin

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49

    Article  Google Scholar 

  • Marussi A (1985) Intrinsic geodesy. Springer, Berlin

    Book  Google Scholar 

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Report No 151, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, USA

  • Metris G, Xu J, Wytrzyszczak (1999) Derivatives of the gravity potential with respect to rectangular coordinates. Celest Mech Dyn Astron 71:137–151

  • Moritz H (1967) Kinematical geodesy. Report No 92, Department of Geodetic Science, Ohio State University, Columbus, Ohio, USA

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:552–560

    Article  Google Scholar 

  • Pajot G, de Viron O, Diament M, Lequentrec-Lalancette M-F, Mikhailov V (2008) Noise reduction through joint processing of gravity and gravity gradient data. Geophysics 73:123–134

    Article  Google Scholar 

  • Petrovskaya MS, Vershkov AN (2010) Construction of spherical harmonic series for the potential derivatives of arbitrary orders in the geocentric Earth-fixed reference frame. J Geod 84:165–178

    Article  Google Scholar 

  • Pick M, Pícha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam

    Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall’ ellissoide. Atti della Reale Accademia della Scienze di Torino 46:331

    Google Scholar 

  • Reed GB (1973) Application of kinematical geodesy for determining the short wavelength components of the gravity field by satellite gradiometry. Report No 201, Department of Geodetic Science, Ohio State University, Columbus, Ohio, USA

  • Rummel R (1986) Satellite gradiometry. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture notes in earth sciences, vol 7. Springer, Berlin, pp 317–363

  • Rummel R (1997) Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 359–404

  • Rummel R (2010) GOCE: Gravitational gradiometry in a satellite. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics. Springer, Berlin, pp 93–103

    Chapter  Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscripta Geodaetica 20:379–385

    Google Scholar 

  • Sali WB (2009) Removing noise due to aircraft motion from gravity gradient data. MSc Thesis, University of Witwatersrand, Johannesburg, South Africa

  • Schwarz KP, Li Z (1997) An introduction to airborne gravimetry and its boundary value problems. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 312–358

  • Seeber G (2003) Satellite geodesy, 2nd edn. De Gruyter, Berlin

    Book  Google Scholar 

  • Smith RS, Thurston JB, Dai TF, MacLeod IN (1998) \(iSPI^{TM}\)-the improved source parameter imaging method. Geophys Prospect 46:141–151

    Article  Google Scholar 

  • Sun W, Wu X, Huang G-Q (2011) Symplectic integrators with potential derivatives to third order. Res Astron Astrophys 11:353–368

    Article  Google Scholar 

  • Šprlák M, Novák P (2014) Integral transformations of gradiometric data onto a GRACE type of observable. J Geod 88:377–390

    Article  Google Scholar 

  • Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geod 88:179–197

    Article  Google Scholar 

  • Thurston JB, Smith RS, Guillon JC (2002) A multimodel method for depth estimation from magnetic data. Geophysics 67:555–561

    Article  Google Scholar 

  • Timmen L (2010) Absolute and relative gravimetry. In: Xu G (ed) Sciences of geodesy-I: advances and future directions. Springer, Berlin, pp 1–48

    Chapter  Google Scholar 

  • Torge W (1989) Gravimetry. De Gruyter, Berlin

    Google Scholar 

  • Torge W, Müller J (2012) Geodesy, 4th edn. De Gruyter Inc., Berlin

    Book  Google Scholar 

  • Tóth G (2005) The gradiometric-geodynamic boundary value problem. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer, Berlin, pp 352–357

    Chapter  Google Scholar 

  • Tóth G, Földváry L (2005) Effect of geopotential model errors on the projection of GOCE gradiometer observables. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer, Berlin, pp 72–76

    Chapter  Google Scholar 

  • Troshkov GA, Shalaev SV (1968) Application of the Fourier transform to the solution of the reverse problem of gravity and magnetic surveys. Can J Explor Geophys 4:46–62

    Google Scholar 

  • Velkoborský P (1982) Use of Poisson’s integral in calculating higher vertical derivatives of harmonic functions—Part 1. Studia Geophysica et Geodaetica 26:3–11

    Article  Google Scholar 

  • Veryaskin A, McRae W (2008) On the combined gravity gradient components modeling for applied geophysics. J Geophys Eng 5:348–356

    Article  Google Scholar 

  • Wang YM (1989) Determination of the gravity disturbance by processing the gravity gradiometer surveying system—processing procedure and results. Scientific Report No 8, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, USA

  • Winch DE, Roberts PH (1995) Derivatives of addition theorem for Legendre functions. J Aust Math Soc Ser B Appl Math 37:212–234

  • Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrische Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satelitenbahnhöhe. Deutsche Geodätische Kommission, Reihe C, No 603, München, Germany

Download references

Acknowledgments

Michal Šprlák was supported by the Project EXLIZ-CZ.1.07/2.3.00/30.0013, which is co-financed by the European Social Fund and the state budget of the Czech Republic. Pavel Novák was supported by the Project 209/12/1929 of the Czech Science Foundation. Thoughtful and constructive comments of Dr. Stefano Casotto and two anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief Prof. Roland Klees and the responsible editor Prof. Christopher Jekeli for handling our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Appendices

Appendix A: Differential operators for the second-order gravitational gradients

In Sect. 3, we construct the differential operators for the third-order (disturbing) gravitational gradients. For this purpose, we exploit also the differential operators for the second-order gravitational gradients. The six second-order differential operators in terms of angular spherical geocentric coordinates \((r, \Omega )\) read as follows (Reed 1973; Koop 1993):

$$\begin{aligned} {\mathcal {D}}^{xx}&= \frac{1}{r} \left( \frac{\partial }{\partial r} + \frac{1}{r} \frac{\partial ^2}{\partial \varphi ^2} \right) ,\end{aligned}$$
(71)
$$\begin{aligned} {\mathcal {D}}^{xy}&= - \frac{1}{r^2 \cos \varphi } \left( \tan \varphi \frac{\partial }{\partial \lambda } + \frac{\partial ^2}{\partial \varphi \partial \lambda } \right) ,\end{aligned}$$
(72)
$$\begin{aligned} {\mathcal {D}}^{xz}&= - \frac{1}{r} \left( \frac{1}{r} \frac{\partial }{\partial \varphi } - \frac{\partial ^2}{\partial r \partial \varphi } \right) ,\end{aligned}$$
(73)
$$\begin{aligned} {\mathcal {D}}^{yy}&= \frac{1}{r} \left( \frac{\partial }{\partial r} - \frac{\tan \varphi }{r} \frac{\partial }{\partial \varphi } + \frac{1}{r \cos ^2 \varphi } \frac{\partial ^2}{\partial \lambda ^2} \right) ,\end{aligned}$$
(74)
$$\begin{aligned} {\mathcal {D}}^{yz}&= \frac{1}{r \cos \varphi } \left( \frac{1}{r} \frac{\partial }{\partial \lambda } - \frac{\partial ^2}{\partial r \partial \lambda } \right) ,\end{aligned}$$
(75)
$$\begin{aligned} {\mathcal {D}}^{zz}&= \frac{\partial ^2}{\partial r^2}. \end{aligned}$$
(76)

Alternatively, the second-order differential operators of Eqs. (71)–(76) may be expressed in terms of the spherical polar coordinates \((r, \psi , \alpha )\), see, e.g. (Wolf 2007; Šprlák et al. 2014):

$$\begin{aligned}&{\mathcal {D}}^{xx}={\mathcal {D}}_{2}^{1} + \cos 2 \alpha {\mathcal {D}}_{2}^{2}, \quad {\mathcal {D}}^{xy} = - \sin 2 \alpha {\mathcal {D}}_{2}^{2},\nonumber \\&{\mathcal {D}}^{xz}=\cos \alpha {\mathcal {D}}_{2}^{3}, \quad {\mathcal {D}}^{yy} = {\mathcal {D}}_{2}^{1} - \cos 2 \alpha {\mathcal {D}}_{2}^{2},\nonumber \\&{\mathcal {D}}^{yz}=- \sin \alpha {\mathcal {D}}_{2}^{3}, \quad {\mathcal {D}}^{zz} = {\mathcal {D}}_{2}^{4}, \end{aligned}$$
(77)

where

$$\begin{aligned} {\mathcal {D}}_{2}^{1}&= \frac{1}{r} \left[ \frac{\partial }{\partial r} + \frac{1}{2 r} \left( \frac{\partial ^2}{\partial \psi ^2} + \cot \psi \frac{\partial }{\partial \psi } \right) \right] , \end{aligned}$$
(78)
$$\begin{aligned} {\mathcal {D}}_{2}^{2}&= \frac{1}{2 r^2} \left( \frac{\partial ^2}{\partial \psi ^2} - \cot \psi \frac{\partial }{\partial \psi } \right) ,\end{aligned}$$
(79)
$$\begin{aligned} {\mathcal {D}}_{2}^{3}&= \frac{1}{r} \left( \frac{1}{r} \frac{\partial }{\partial \psi } - \frac{\partial ^2}{\partial r \, \partial \psi } \right) ,\end{aligned}$$
(80)
$$\begin{aligned} {\mathcal {D}}_{2}^{4}&= \frac{\partial ^2}{\partial r^2}. \end{aligned}$$
(81)

Note that the subscript in Eqs. (78)–(81) refers to the order of the gravitational gradients.

Appendix B: Explicit decomposition of degree-dependent terms

To arrive at the new isotropic kernels \({\mathcal {K}}^{i*, j}\); \(i \in \{0, 1, 2, 3\}\); \(j \in \{{\mathcal {N}}, {\mathcal {P}}, {\mathcal {S}}, {\mathcal {H}}\}\) in the closed form, see Sect. 4, an explicit decomposition of some degree-dependent terms is required. Such a decomposition is completely defined by the following equations:

$$\begin{aligned}&h_n^{{\mathcal {N}}}\ (n + 1) (n + 2) (n + 3) = 6 + 11 n + 6 n^2 + n^3,\end{aligned}$$
(82)
$$\begin{aligned}&h_n^{{\mathcal {N}}}\ (n + 2) (n + 3) = 6 + 5 n + n^2,\end{aligned}$$
(83)
$$\begin{aligned}&h_n^{{\mathcal {N}}}\ (n + 3) = 3 + n,\end{aligned}$$
(84)
$$\begin{aligned}&h_n^{{\mathcal {N}}} \!=\! 1,\end{aligned}$$
(85)
$$\begin{aligned}&h_n^{{\mathcal {P}}}\ (n \!+\! 1) (n \!+\! 2) (n \!+\! 3) \!=\! 6 \!+\! 23 n \!+\! 28 n^2 \!+\! 13 n^3 \!+\! 2 n^4,\end{aligned}$$
(86)
$$\begin{aligned}&h_n^{{\mathcal {P}}}\ (n + 2) (n + 3) = 6 + 17 n + 11 n^2 + 2 n^3,\end{aligned}$$
(87)
$$\begin{aligned}&h_n^{{\mathcal {P}}}\ (n + 3) = 3 + 7 n + 2 n^2,\end{aligned}$$
(88)
$$\begin{aligned}&h_n^{{\mathcal {P}}} = 1 + 2 n,\end{aligned}$$
(89)
$$\begin{aligned}&h_n^{{\mathcal {S}}}\ (n + 1) (n + 2) (n + 3) \nonumber \\&= \frac{72}{n - 1} + 66 + 43 n + 15 n^2 + 2 n^3,\end{aligned}$$
(90)
$$\begin{aligned}&h_n^{{\mathcal {S}}}\ (n + 2) (n + 3) = \frac{36}{n - 1} + 30 + 13 n + 2 n^2,\end{aligned}$$
(91)
$$\begin{aligned}&h_n^{{\mathcal {S}}}\ (n + 3) = \frac{12}{n - 1} + 9 + 2 n,\end{aligned}$$
(92)
$$\begin{aligned}&h_n^{{\mathcal {S}}} = \frac{3}{n - 1} + 2,\end{aligned}$$
(93)
$$\begin{aligned}&h_n^{{\mathcal {H}}}\ (n + 1) (n + 2) (n + 3) = 6 + 17 n + 11 n^2 + 2 n^3,\end{aligned}$$
(94)
$$\begin{aligned}&h_n^{{\mathcal {H}}}\ (n + 2) (n + 3) = - \frac{2}{n + 1} + 8 + 9 n + 2 n^2,\end{aligned}$$
(95)
$$\begin{aligned}&h_n^{{\mathcal {H}}}\ (n + 3) = - \frac{2}{n + 1} + 5 + 2 n,\end{aligned}$$
(96)
$$\begin{aligned}&h_n^{{\mathcal {H}}} = - \frac{1}{n + 1} + 2. \end{aligned}$$
(97)

Note that the symbols \(h_n^{j}\); \(j \in \{{\mathcal {N}}, {\mathcal {P}}, {\mathcal {S}}, {\mathcal {H}}\}\) stand for the eigenvalues of the Newton, Abel-Poisson, Pizzetti and Hotine kernels. These are defined by Eqs. (39)–(42).

Appendix C: Sums of infinite series

To derive the new isotropic kernels \({\mathcal {K}}^{i*, j}\); \(i \in \{0, 1, 2, 3\}\); \(j \in \{{\mathcal {N}}, {\mathcal {P}}, {\mathcal {S}}, {\mathcal {H}}\}\) in closed form, see Sect. 4, we also need closed form expressions for some infinite series. Complete set of these summation rules reads as follows:

$$\begin{aligned}&S_{1}(t,u) \!=\! \sum \limits _{n=0}^{\infty }t^{n+4}\frac{1}{n + 1} P_{n,0}(u)\!=\!t^3 \ln \left( \frac{g + t \!-\! u}{1 \!-\! u}\right) ,\end{aligned}$$
(98)
$$\begin{aligned}&S_{2}(t,u) = \sum \limits _{n=0}^{\infty }t^{n+4}P_{n,0}(u)= \frac{t^4}{g},\end{aligned}$$
(99)
$$\begin{aligned}&S_{3}(t,u) = \sum \limits _{n=0}^{\infty }t^{n+4}nP_{n,0}(u) =\frac{t^5 (u - t)}{g^3},\end{aligned}$$
(100)
$$\begin{aligned}&S_{4}(t,u) = \sum \limits _{n=0}^{\infty }t^{n+4}n^2P_{n,0}(u)\nonumber \\&\quad = \frac{t^5}{g^3} \left[ u - 2 t + \frac{3 t (t - u)^2}{g^2}\right] ,\end{aligned}$$
(101)
$$\begin{aligned}&S_{5}(t,u) =\sum \limits _{n=0}^{\infty }t^{n+4}n^3 P_{n,0}(u)=\frac{t^5}{g^3} \Bigg [u - 4 t \nonumber \\&\quad + \frac{9 t (t - u) (2 t - u)}{g^2} - \frac{15 t^2 (t - u)^3}{g^4}\Bigg ],\end{aligned}$$
(102)
$$\begin{aligned}&S_{6}(t,u) = \sum \limits _{n=0}^{\infty }t^{n+4}n^4P_{n,0}(u)\nonumber \\&\quad = \frac{t^5}{g^3} \left[ u - 8 t + \frac{12 t (t - u) (7 t - u) + 9 t u^2}{g^2} \right. \nonumber \\&\qquad \left. - \frac{90 t^2 (t - u)^2 (2 t - u)}{g^4} + \frac{105 t^3 (t - u)^4}{g^6}\right] ,\end{aligned}$$
(103)
$$\begin{aligned}&S_{7}(t,u) = \sum \limits _{n=1}^{\infty }t^{n+4}\frac{1}{n + 1} P_{n,1}(u) \nonumber \\&\quad = t^3 \sqrt{1 - u^2} \left[ \frac{1}{1 - u} - \frac{g + t}{g (g + t - u)}\right] ,\end{aligned}$$
(104)
$$\begin{aligned}&S_{8}(t,u) = \sum \limits _{n=1}^{\infty }t^{n+4}P_{n,1}(u)= \frac{t^5 \sqrt{1 - u^2}}{g^3},\end{aligned}$$
(105)
$$\begin{aligned}&S_{9}(t,u) = \sum \limits _{n=1}^{\infty }t^{n+4}nP_{n,1}(u)\nonumber \\&\quad =\frac{t^5 \sqrt{1 - u^2}}{g^3} \left[ 1 + \frac{3 t (u - t)}{g^2}\right] ,\end{aligned}$$
(106)
$$\begin{aligned}&S_{10}(t,u) = \sum \limits _{n=1}^{\infty }t^{n+4}n^2 P_{n,1}(u)\nonumber \\&= \frac{t^5 \sqrt{1 - u^2}}{g^3} \left[ 1 + \frac{3 t (3 u - 4 t)}{g^2} + \frac{15 t^2 (t - u)^2}{g^4}\right] ,\end{aligned}$$
(107)
$$\begin{aligned}&S_{11}(t,u) = \sum \limits _{n=1}^{\infty }t^{n+4}n^3 P_{n,1}(u)\nonumber \\&\quad = \frac{t^5 \sqrt{1 - u^2}}{g^3} \left[ 1 + \frac{3 t (7 u - 13 t)}{g^2} \right. \nonumber \\&\quad \quad \left. + \frac{45 t^2 (t - u) (3 t - 2 u)}{g^4} - \frac{105 t^3 (t - u)^3}{g^6}\right] , \end{aligned}$$
(108)
$$\begin{aligned} S_{12}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}\frac{1}{n + 1}P_{n,2}(u)\nonumber \\&= t^3 (1 - u^2) \left[ \frac{1}{(1 - u)^2} - \frac{t^2}{g^3 (g + t - u)} \right. \nonumber \\&\left. - \frac{(g + t)^2}{g^2 (g + t - u)^2}\right] ,\end{aligned}$$
(109)
$$\begin{aligned} S_{13}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}P_{n,2}(u)= \frac{3 t^6 (1 - u^2)}{g^5},\end{aligned}$$
(110)
$$\begin{aligned} S_{14}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}nP_{n,2}(u)\nonumber \\&= \frac{3 t^6 (1 - u^2)}{g^5} \left[ 2 + \frac{5 t (u - t)}{g^2}\right] ,\end{aligned}$$
(111)
$$\begin{aligned} S_{15}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}n^2 P_{n,2}(u)=\frac{3 t^6 (1 - u^2)}{g^5} \left[ 4 \right. \nonumber \\&\left. + \frac{5 t (5 u - 6 t)}{g^2} + \frac{35 t^2 (t - u)^2}{g^4}\right] ,\end{aligned}$$
(112)
$$\begin{aligned} S_{16}(t,u)&= \sum \limits _{n=3}^{\infty }t^{n+4}\frac{1}{n + 1}P_{n,3}(u)\nonumber \\&= t^3 \sqrt{(1 - u^2)^{3}} \left[ \frac{2}{(1 - u)^3} - \frac{3 t^3}{g^5 (g + t - u)} \right. \nonumber \\&\left. - \frac{3 t^2 (g + t)}{g^4 (g + t - u)^2} - \frac{2 (g + t)^3}{g^3 (g + t - u)^3}\right] ,\end{aligned}$$
(113)
$$\begin{aligned} S_{17}(t,u)&= \sum \limits _{n=3}^{\infty }t^{n+4}P_{n,3}(u)= \frac{15 t^7 \sqrt{(1 - u^2)^{3}}}{g^7},\end{aligned}$$
(114)
$$\begin{aligned} S_{18}(t,u)&= \sum \limits _{n=3}^{\infty }t^{n+4}nP_{n,3}(u)\nonumber \\&= \frac{15 t^7 \sqrt{(1 - u^2)^{3}}}{g^7} \left[ 3 + \frac{7 t (u - t)}{g^2}\right] ,\end{aligned}$$
(115)
$$\begin{aligned} S_{19}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}\frac{1}{n - 1}P_{n,0}(u)\nonumber \\&= t^4 \left[ 1 - g - t u - t u \ln \left( \frac{1 + g - t u}{2}\right) \right] ,\end{aligned}$$
(116)
$$\begin{aligned} S_{20}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}P_{n,0}(u)= S_{2}(t,u) - t^4 (1 + t u),\end{aligned}$$
(117)
$$\begin{aligned} S_{21}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}nP_{n,0}(u) = S_{3}(t,u) - t^5 u,\end{aligned}$$
(118)
$$\begin{aligned} S_{22}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}n^2 P_{n,0}(u)= S_{4}(t,u) - t^5 u,\end{aligned}$$
(119)
$$\begin{aligned} S_{23}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}n^3 P_{n,0}(u)= S_{5}(t,u) - t^5 u, \end{aligned}$$
(120)
$$\begin{aligned} S_{24}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}\frac{1}{n - 1}P_{n,1}(u)\nonumber \\&= t^5 \sqrt{1 - u^2} \left[ \frac{(g + 1)^2}{g (1 + g - t u)} - 2 \right. \nonumber \\&\left. - \ln \left( \frac{1 + g - t u}{2}\right) \right] ,\end{aligned}$$
(121)
$$\begin{aligned} S_{25}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}P_{n,1}(u)= S_{8}(t,u) - t^5 \sqrt{1 - u^2},\end{aligned}$$
(122)
$$\begin{aligned} S_{26}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}nP_{n,1}(u) = S_{9}(t,u) - t^5 \sqrt{1 - u^2},\nonumber \\\end{aligned}$$
(123)
$$\begin{aligned} S_{27}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}n^2 P_{n,1}(u)= S_{10}(t,u) - t^5 \sqrt{1 - u^2},\nonumber \\\end{aligned}$$
(124)
$$\begin{aligned} S_{28}(t,u)&= \sum \limits _{n=2}^{\infty }t^{n+4}\frac{1}{n - 1}P_{n,2}(u)\nonumber \\&= \frac{t^6 (1 - u^2)}{1 + g - t u} \left[ 1 + \frac{1}{g^3} + \frac{(g + 1)^3}{g^2 (1 + g - t u)}\right] ,\nonumber \\\end{aligned}$$
(125)
$$\begin{aligned} S_{29}(t,u)&= \sum \limits _{n=3}^{\infty }t^{n+4}\frac{1}{n - 1}P_{n,3}(u)\nonumber \\&= \frac{t^7 \sqrt{(1 - u^2)^{3}}}{1 + g - t u} \left[ \frac{3}{g^5} + \frac{1}{1 + g - t u} \right. \nonumber \\&\left. + \frac{4 g + 3}{g^4 (1 + g - t u)} + \frac{2 (g + 1)^4}{g^3 (1 + g - t u)^2}\right] . \end{aligned}$$
(126)

Note that some of the summation rules may be found, e.g. in (Pick et al. 1973; Moritz 1980; Martinec 2003; Šprlák and Novák 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Novák, P. Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geod 89, 141–157 (2015). https://doi.org/10.1007/s00190-014-0767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0767-z

Keywords

Navigation