Skip to main content
Log in

Construction and application of hierarchical decision tree for classification of ultrasonographic prostate images

  • Computing and Data Processing
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A non-parametric algorithm is described for the construction of a binary decision tree classifier. This tree is used to correlate textural features, computed from ultrasonographic prostate images, with the histopathology of the imaged tissue. The algorithm consists of two parts; growing and pruning. In the growing phase an optimal tree is grown, based on the concept of mutual information. After growing, the tree is pruned by an alternating interaction of two data sets. Moreover, the structure and performance of the constructed tree are compared to the results using a slightly modified corresponding growing and pruning algorithm. The modified algorithm provides better retrospective and prospective classification results than the original algorithm. The use of the tree for automated cancer detection in ultrasonographic prostate images results in retrospective and prospective accuracy of 77.9% and 72.3%, respectively. Using this tissue characterisation, a supporting tool is provided for the interpretation of transrectal ultrasonographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertermann, H., Loch, T. andGouge, J. (1989): ‘Computer-gesteuerte Ultraschallbild-Analyse,’Urologie Nephrologie,1, pp. 24–30

    Google Scholar 

  • Brawer, M. K. (1993): ‘The diagnosis of prostatic carcinoma,’Cancer,71, pp. 899–905

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A. andStone, C. J. (1984): ‘Classification and regression trees’ (Wadsworth International Group, Belmont, California, USA)

    MATH  Google Scholar 

  • Chodak, G. W., Wald, V., Parmer, E., Watanabe, H., Ohe, H., andSaitoh, M. (1986): ‘Comparison of digital examination and transcrectal ultrasonography for the diagnosis of prostatic cancer,’J. Urol.,135, pp. 951–954

    Google Scholar 

  • Friedman, J. H. (1977): ‘A recursive partitioning decision rule for nonprametric classification,’IEEE Trans.,C-26, pp. 404–408

    MATH  Google Scholar 

  • Gelfand, S. B., Ravishankar, C. S. andDelp, E. J. (1991): ‘An iterative growing and pruning algorithm for classification tree design,’IEEE Trans.,PAMI-13, pp. 163–174

    Google Scholar 

  • Gerber, G. S., Goldberg, R. andChodak, G. W. (1992): ‘Local staging of prostate cancer by tumor volume, prostate-specific antigen, and transrectal ultrasound,’Urol.,40, pp. 311–316

    Article  Google Scholar 

  • Giesen, R. J. B. andHuynen, A. L. (1991): ‘Ultrasonographic tissue discrimination; automatic detection of prostate carinoma’. Master Thesis, Department of Computer Science, University of Twente, Enschede, The Netherlands

    Google Scholar 

  • Giesen, R. J. B., Huynen, A. L., de la Rosette, J. J. M. C. H., Schaafsman, H. E., van Lersel, M. P., Aarnink, R. G., Debruyne, F. M. J. andWijkstra, H. (1994): ‘The reliability of computer analysis of ultrasonographic prostate images; the influence of inconsistent histopathology,’Ultrasound Med. Biol.,20, pp. 871–876

    Article  Google Scholar 

  • Haralick, R. M., Shanmugam, K. andDinstein, I. (1973): ‘Textural features for image classification,’IEEE Trans.,SMC-3, pp. 610–621

    Google Scholar 

  • Henrichon, E. G. andFu, K. S. (1969): ‘A nonparametric partitioning procedure for pattern classification,’IEEE Trans.,C-18, pp. 614–624

    MATH  Google Scholar 

  • Huynen, A. L., Giesen, R. J. B., de la Rosetta, J. J. M. C. H., Aarnink, R. G., Debruyne, F. M. J. andWijkstra, H. (1994): ‘Analysis of ultrasonographic prostate images for the detection of prostate carcinoma: the Automated Urologic Diagnostic EXpert system,’Ultrasound Med. Biol.,20, pp. 1–10

    Article  Google Scholar 

  • Kaye, K. W. andLightner, D. J. (1993): ‘Prostate biopsy indices: toward efficient use of transrectal ultrasound,’Urol.,41, pp. 417–420

    Article  Google Scholar 

  • Landeweerd, G. H., Timmers, T. andGelsema, E. S. (1983): ‘Binary tree versus single level tree classification of white blood cells,’Patt Recognit.,16, pp. 571–577

    Article  Google Scholar 

  • Lee, F., Torp-Pedersen, S. T. andMcLeary, R. D. (1989a): ‘Diagnosis of prostate cancer by transrectal ultrasound,’Urol. Clin. North Am.,16, pp. 663–673

    Google Scholar 

  • Lee, F., Torp-Pedersen, S. T., Siders, D. B., Littrup, P. J. andMcLeary, R. D. (1989b): ‘Transrectal ultrasound in the diagnosis and staging of prostatic carcinoma,’Radiol. 170, pp. 609–615

    Google Scholar 

  • Lin, Y. K. andFu, K. S. (1983): ‘Automatic classification of cervical cells using a binary tree classifier,’Patt. Recognit.,16, pp. 69–80

    Article  Google Scholar 

  • Loch, T., Gettys, T., Cochran, J. S., Fulgham, P. F. andBertermann, H. (1990): ‘Computer-aided image analysis in transrectal ultrasound of the prostate,’World J. Urol.,8, pp. 150–153

    Article  Google Scholar 

  • Mui, J. K. andFu, K. S. (1993): ‘Automatic classification of nucleated blood cells using a binary tree classifier,’IEEE Trans.,PAMI-2, pp. 429–443

    Google Scholar 

  • Park, Y. andSklansky, J. (1990): ‘Automated design of liner tree classifiers,’Patt. Recognit.,23, pp. 1393–1412

    Article  Google Scholar 

  • Rounds, E. M. (1980): ‘A combined nonparametric approach to feature selection and binary tree design,’Patt. Recognit.,12, pp. 313–317

    Article  Google Scholar 

  • Scardino, P. T., Shinohara, K., Wheeler, T. M. andCarter, S. St. C. (1989): ‘Staging of prostate cancer; value of ultrasonography,’Urol. Clin. North Am.,16, pp. 713–734

    Google Scholar 

  • Sethi, I. K. andSarvarayudu, G. P. R. (1982): ‘Hierarchical classifier design using mutual information,’IEEE Trans.,PAMI-4, pp. 441–445

    Google Scholar 

  • Shinohara, K., Scardino, P. T., Carter, S. St. C. andWheeler, T. M. (1989): ‘Pathologic basis of the sonographic appearance of the normal and malignant prostate,’Urol. Clin. North., Am.,16, pp. 675–691

    Google Scholar 

  • Wang, Q. R. andSuen, C. Y. (1987): ‘Large tree classifier with heuristic search and global training,’IEEE Trans.,PAMI-9, pp. 91–102

    Google Scholar 

  • Wolf, J. S., Shinohara, K. andNarayan, P. (1992): ‘Staging of prostate cancer. Accuracy of transrectal ultrasound enhanced by prostate-specific antigen,’Br. J. Uroll 70, pp. 534–541

    Google Scholar 

  • Zielhe, Th., Nauth, P., Stein, N., Seelen, V.W. andLoch, E.-G. (1985): ‘Quantitative Verfahren bei der Ultraschalldiagnostik,’Radiologe,25, pp. 468–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesen, R.J.B., Huynen, A.L., Aarnink, R.G. et al. Construction and application of hierarchical decision tree for classification of ultrasonographic prostate images. Med. Biol. Eng. Comput. 34, 105–109 (1996). https://doi.org/10.1007/BF02520013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520013

Keywords

Navigation