Skip to main content

Ovarian Tumor Characterization and Classification Using Ultrasound: A New Online Paradigm

  • Chapter
  • First Online:
Ovarian Neoplasm Imaging

Abstract

Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Image mining algorithms have been predominantly used to give the physicians a more objective, fast, and accurate second opinion on the initial diagnosis made from medical images. The objective of this work is to develop an adjunct Computer-Aided Diagnostic (CAD) technique that uses 3D ultrasound images of the ovary to accurately characterize and classify benign and malignant ovarian tumors. In this algorithm, we first extract features based on the textural changes and higher-order spectra (HOS) information. The significant features are then selected and used to train and evaluate the decision tree (DT) classifier. The proposed technique was validated using 1,000 benign and 1,000 malignant images, obtained from ten patients with benign and ten with malignant disease, respectively. On evaluating the classifier with tenfold stratified cross validation, the DT classifier presented a high accuracy of 97 %, sensitivity of 94.3 %, and specificity of 99.7 %. This high accuracy was achieved because of the use of the novel combination of the four features which adequately quantify the subtle changes and the nonlinearities in the pixel intensity variations. The rules output by the DT classifier are comprehensible to the end user and, hence, allow the physicians to more confidently accept the results. The preliminary results show that the features are discriminative enough to yield good accuracy. Moreover, the proposed technique is completely automated and accurate and can be easily written as a software application for use in any computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCI (National Cancer Institute) on ovarian cancer. Information website http://www.cancer.gov/cancertopics/types/ovarian. Accessed 4 Oct 2011.

  2. Bast Jr RC, Badgwell D, Lu Z, et al. New tumor markers: CA125 and beyond. Int J Gynecol Cancer. 2005;15:274–81.

    Article  PubMed  Google Scholar 

  3. Zaidi SI. Fifty years of progress in gynecologic ultrasound. Int J Gynaecol Obstet. 2007;99:195–7.

    Article  PubMed  Google Scholar 

  4. Menon U, Talaat A, Rosenthal AN, et al. Performance of ultrasound as a second line test to serum CA125 in ovarian cancer screening. BJOG. 2000;107:165–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kim KA, Park CM, Lee JH, et al. Benign ovarian tumors with solid and cystic components that mimic malignancy. AJR Am J Roentgenol. 2004;182:1259–65.

    Article  PubMed  Google Scholar 

  6. Lenic M, Zazula D, Cigale B. Segmentation of ovarian ultrasound images using single template cellular neural networks trained with support vector machines. In: Proceedings of 20th IEEE international symposium on Computer-Based Medical Systems, Maribor, 2007, 205–12.

    Google Scholar 

  7. Hiremath PS, Tegnoor JR. Recognition of follicles in ultrasound images of ovaries using geometric features. In: Proceedings of international conference on Biomedical and Pharmaceutical Engineering, Singapore, 2009, 1–8.

    Google Scholar 

  8. Deng Y, Wang Y, Chen P. Automated detection of polycystic ovary syndrome from ultrasound images. In: Proceedings of the 30th annual international IEEE Engineering in Medicine and Biology Society conference, Vancouver, 2008, p. 4772–5.

    Google Scholar 

  9. Sohail ASM, Rahman MM, Bhattacharya P, Krishnamurthy S, Mudur SP. Retrieval and classification of ultrasound images of ovarian cysts combining texture features and histogram moments. In: IEEE international symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, 2010, p. 288–91.

    Google Scholar 

  10. Sohail ASM, Bhattacharya P, Mudur SP, Krishnamurthy S. Selection of optimal texture descriptors for retrieving ultrasound medical images. In: IEEE international symposium on Biomedical Imaging: From Nano to Macro, Chicago, 2011, p. 10–6.

    Google Scholar 

  11. Renz C, Rajapakse JC, Razvi K, Liang SKC. Ovarian cancer classification with missing data. In: Proceedings of 9th international conference on Neural Information Processing, Singapore, 2002, vol. 2, p. 809–13.

    Google Scholar 

  12. Assareh A, Moradi MH. Extracting efficient fuzzy if-then rules from mass spectra of blood samples to early diagnosis of ovarian cancer. In: IEEE symposium on Computational Intelligence and Bioinformatics and Computational Biology, Honolulu, 2007, p. 502–6.

    Google Scholar 

  13. Tan TZ, Quek C, Ng GS, Razvi K. Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif Intell Med. 2008;43:207–22.

    Article  PubMed  Google Scholar 

  14. Meng H, Hong W, Song J, Wang L. Feature extraction and analysis of ovarian cancer proteomic mass spectra. In: 2nd international conference on Bioinformatics and Biomedical Engineering, Shanghai, 2008, p. 668–71.

    Google Scholar 

  15. Tang KL, Li TH, Xiong WW, Chen K. Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinformatics. 2010;11:109.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Petricoin F. Use of proteomic patterns serum to identify ovarian cancer. Lancet. 2002;359:572–7.

    Article  CAS  PubMed  Google Scholar 

  17. Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol. 1999;106:21–30.

    Article  CAS  PubMed  Google Scholar 

  18. Brüning J, Becker R, Entezami M, Loy V, Vonk R, Weitzel H, et al. Knowledge-based system ADNEXPERT to assist the sonographic diagnosis of adnexal tumors. Methods Inf Med. 1997;36:201–6.

    PubMed  Google Scholar 

  19. Biagiotti R, Desii C, Vanzi E, Gacci G. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology. 1999;210:399–403.

    Article  CAS  PubMed  Google Scholar 

  20. Zimmer Y, Tepper R, Akselrod S. An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med Biol. 2003;29:1561–70.

    Article  PubMed  Google Scholar 

  21. Lucidarme O, Akakpo JP, Granberg S, et al. A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol. 2010;20:1822–30.

    Article  PubMed  Google Scholar 

  22. Bellman RE. Dynamic programming. Mineola: Courier Dover Publications; 2003.

    Google Scholar 

  23. Hata T, Yanagihara T, Hayashi K, Yamashiro C, et al. Three-dimensional ultrasonographic evaluation of ovarian tumours: a preliminary study. Hum Reprod. 1999;14:858–61.

    Article  CAS  PubMed  Google Scholar 

  24. Laban M, Metawee H, Elyan A, Kamal M, Kamel M, Mansour G. Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors. Int J Gynaecol Obstet. 2007;99:201–5.

    Article  CAS  PubMed  Google Scholar 

  25. Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA. Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol. 2001;82:40–8.

    Article  CAS  PubMed  Google Scholar 

  26. Okugawa K, Hirakawa T, Fukushima K, Kamura T, Amada S, Nakano H. Relationship between age, histological type, and size of ovarian tumors. Int J Gynaecol Obstet. 2001;74:45–50.

    Article  CAS  PubMed  Google Scholar 

  27. Webb JAW. Ultrasound in ovarian carcinoma. In: Reznek R, editor. Cancer of the ovary. Cambridge: Cambridge University Press; 2006. p. 94–111.

    Chapter  Google Scholar 

  28. Guerriero S, Alcazar JL, Pascual MA, Ajossa S, Gerada M, Bargellini R, Virgilio B, Melis GB. Intraobserver and interobserver agreement of grayscale typical ultrasonographic patterns for the diagnosis of ovarian cancer. Ultrasound Med Biol. 2008;34:1711–6.

    Article  PubMed  Google Scholar 

  29. Testa AC, Gaurilcikas A, Licameli A, Mancari R, Di Legge A, Malaggese M, Mascilini F, Zannoni GF, Scambia G, Ferrandina G. Sonographic features of primary ovarian fibrosarcoma: a report of two cases. Ultrasound Obstet Gynecol. 2009;33:112–5.

    Article  CAS  PubMed  Google Scholar 

  30. Park SB, Lee JW, Kim SK. Content-based image classification using a neural network. Pattern Recogn Letters. 2004;25:287–300.

    Article  Google Scholar 

  31. Gonzalez C, Woods RE. Digital image processing. Upper Saddle River: Prentice Hall; 2001.

    Google Scholar 

  32. Fortin C. Fractal dimension in the analysis of medical images. IEEE Eng Med Biol. 1992;11:65–71.

    Article  Google Scholar 

  33. Mandelbrot BB. The fractal geometry of nature. New York: WH Freeman Ed; 1982.

    Google Scholar 

  34. Biswas MK, Ghose T, Guha S, Biswas PK. Fractal dimension estimation for texture images: a parallel approach. Pattern Recogn Letters. 1998;19:309–13.

    Article  Google Scholar 

  35. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21.

    Article  Google Scholar 

  36. Ramana KV, Ramamoorthy B. Statistical methods to compare the texture features of machined surfaces. Pattern Recogn. 1996;29:1447–59.

    Article  Google Scholar 

  37. Galloway MM. Texture classification using gray level run length. Comput Graph Image Process. 1975;4:172–9.

    Article  Google Scholar 

  38. Nikias C, Petropulu A. Higher-order spectral analysis. Englewood Cliffs: Prentice-Hall; 1997.

    Google Scholar 

  39. Chua KC, Chandran V, Acharya UR, Lim C. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2011;35(6):1563–71. doi:10.1007/s10916-010-9433-z.

    Article  PubMed  Google Scholar 

  40. Acharya UR, Chua KC, Lim TC, Dorithy DL, Suri JS. Automatic identification of epileptic EEG signals using nonlinear parameters. J Med Mech Biol. 2009;9:539–53.

    Article  Google Scholar 

  41. Chua KC, Chandran V, Acharya UR, Lim CM. Analysis of epileptic EEG signals using higher order spectra. J Med Eng Technol. 2009;33:42–50.

    Article  CAS  PubMed  Google Scholar 

  42. Ramm A, Katsevich A. The radon transform and local tomography. Boca Raton: CRC Press; 1996.

    Google Scholar 

  43. Box JF. Guinness, gosset, fisher, and small samples. Stat Sci. 1987;2:45–52.

    Article  Google Scholar 

  44. Larose DT. Decision trees. In: Discovering knowledge in data: an introduction to data mining. Hoboken: Wiley Interscience; 2004. p. 108–26.

    Chapter  Google Scholar 

  45. Acharya UR, Sree SV, Krishnan MM, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization using 3D ultrasound. Technol Cancer Res Treat. 2012;11(6):543–52.

    PubMed  Google Scholar 

  46. Philpotts LE. Can computer-aided detection be detrimental to mammographic interpretation? Radiology. 2009;253(1):17–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri PhD, MBA, Fellow AIMBE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acharya, U.R., Saba, L., Molinari, F., Guerriero, S., Suri, J.S. (2013). Ovarian Tumor Characterization and Classification Using Ultrasound: A New Online Paradigm. In: Saba, L., Acharya, U., Guerriero, S., Suri, J. (eds) Ovarian Neoplasm Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8633-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8633-6_26

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8632-9

  • Online ISBN: 978-1-4614-8633-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics