Skip to main content
Log in

Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes

  • Notes and Comments
  • Published:
Researches on Population Ecology

Abstract

Although theoretical foodweb models predict the presence of only three to four trophic categories, estimation of “potential” vertical foodweb structure from species lists and inferred feeding interactions suggest that as many as 7 trophic categories can occur in the pelagic foodwebs of North American glaciated lakes. A compilation of data on the nitrogen isotopic composition of zooplankton from 46 Canadian Shield lakes suggested the average existence of one “realized” trophic category in addition to that of filter-feeding, herbivorous cladocerans. When phytoplankton, planktivorous invertebrates, and plantivorous and piscivorous fish are included, the vertical foodweb structure in the pelagic zones of these lakes are greater than those hypothesized from some theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briand, F. (1983) Environmental control of food web structure.Ecology 64: 253–263.

    Article  Google Scholar 

  • Cabana, G. and J. B. Rasmussen (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes.Nature 372: 255–257.

    Article  CAS  Google Scholar 

  • Cabana, G. and J. B. Rasmussen (1996) Comparing aquatic food chains using nitrogen isotopes.Proceedings of the National Academy of Science of the USA (in press)

  • Cohen, J. E., F. Briand and C. M. Newman (1986) A stochastic theory of community food webs. III. Predicted and observed lengths of food chains.Proceedings of the Royal Society of London Series B 228: 317–353.

    Article  Google Scholar 

  • Cohen, J. E. and T. Luczak (1992) Trophic levels in community food webs,Evolutionary Ecology 6: 73–89.

    Article  Google Scholar 

  • Cousins, S. (1980) A trophic continuum derived from plant structure, animal size and a detritus cascade.Journal of Theoretical Biology 82: 607–618.

    Article  PubMed  CAS  Google Scholar 

  • Cousins, S. (1987) Decline of the trophic level concept.Trends in Ecology and Evolution 2: 312–316.

    Article  Google Scholar 

  • Darnell, R. M. (1961) Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Lousiana.Ecology 42: 553–568.

    Article  Google Scholar 

  • del Giorgio, P. A. and R. L. France (1996) Ecosystem-specific patterns in zooplankton and POM or microplankton δ13C.Limnology and Oceanography 41: 359–365.

    Google Scholar 

  • DeNiro, M. J. and S. Epstein (1981) Influence of diet on the distribution of nitrogen isotopes in animals.Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Dillon, P. J. and others (1987)Lakeshore capacity study. Trophic status report. Ontario Ministry of Municipal Affairs, Toronto, Ontario.

    Google Scholar 

  • France, R. L. (1994) Nitrogen isotopic composition of marine and freshwater invertebrates.Marine Ecology Progress Series 115: 205–207.

    Google Scholar 

  • France, R. L. (1995a) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes.Limnology and Oceanography 40: 1310–1313.

    Article  Google Scholar 

  • France, R. L. (1995b) Carbon isotopic variability in the composite pelagic foodweb of four oligotrophic lakes: feeding diversity or metabolic fractionations?Journal of Plankton Research 17: 1993–1997.

    Google Scholar 

  • France, R. L. and R. J. Steedman (1996) Energy provenance for juvenile lake trout in small Canadian Shield lakes shown by stable isotopes.Transactions of the American Fisheries Society 125: 512–518.

    Article  Google Scholar 

  • France, R., N. Yan, P. Olesiuk, R. Nero, P. del Giorgio and W. Keller (1995) Secondary analysis of zooplanktivorous macroinvertebrates and phytoplankton and water clarity associations.Freshwater Biology 34: 255–261.

    Article  Google Scholar 

  • Fry, B. (1988) Food web structure on Georges Bank from stable C, N, and S isotopic composition.Limnology and Oceanography 33: 1187–1190.

    Article  Google Scholar 

  • Glasser, J. W. (1983) Variation in niche breadth with trophic position: on the disparity between expected and observed species packing.American Naturalist 122: 542–548.

    Article  Google Scholar 

  • Goldwasser, L. and J. Roughgarden (1993) Construction and analysis of a large Caribbean food web.Ecology 74: 1216–1233.

    Article  Google Scholar 

  • Gu, B., D. M. Schell and V. Alexander (1994) Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake.Canadian Journal of Fisheries and Aquatic Sciences 51: 1338–1344.

    Article  Google Scholar 

  • Hall, S. J. and D. G. Raffaelli (1991) Food web patterns: lessons from a species rich web.Journal of Animal Ecology 60: 823–841.

    Article  Google Scholar 

  • Hall, S. J. and D. G. Raffaelli (1993) Food webs: theory and reality.Advances in Ecological Research 24: 187–239.

    Google Scholar 

  • Hamilton, S. K. and W. G. Lewis (1992) Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela.Geochimica et Cosmochimica Acta 56: 4237–4246.

    Article  CAS  Google Scholar 

  • Hanski, I. (1987) Plankton that don't obey the rules.Trends in Ecology and Evolution 2: 350–351.

    Article  Google Scholar 

  • Hecky, R. E. and R. H. Hesslein (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis.Journal of the North American Benthological Society 14: 631–653.

    Article  Google Scholar 

  • Hobson, K. A. and H. E. Welch (1995) Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis.Canadian Journal of Fisheries and Aquatic Sciences 52: 1195–1201.

    Article  Google Scholar 

  • Kercher, J. R. and H. H. Shugart (1975) Trophic structure, effective trophic position, and connectivity in food webs.American Naturlist 109: 191–206.

    Article  Google Scholar 

  • Kitching, R. L. (1987) Spatial and temporal variation in food webs in water-filled treeholes.Oikos 48: 280–288.

    Google Scholar 

  • Kling, G. W., B. Fry and W. J. O'Brien (1992) Stable isotopes and planktonic trophic structure in arctic lakes.Ecology 73: 561–566.

    Article  Google Scholar 

  • Kozlovsky, D. G. (1968) A critical evaluation of the trophic level concept. I. Ecological efficiencies.Ecology 49: 48–60.

    Article  Google Scholar 

  • Lawton, J. H. (1992) Feeble links in food webs.Nature 355: 19–20.

    Article  Google Scholar 

  • Levine, S. (1980) Several measures of trophic structure applicable to complex food webs.Journal of Theoretical Biology 83: 195–207.

    Article  Google Scholar 

  • Martinez, N. D. (1991) Artifacts or attributes? effects of resolution on the Little Rock Lake food web.Ecological Monographs 61: 367–392.

    Article  Google Scholar 

  • May, R. M. (1983) The structure of food webs.Nature 301: 566–568.

    Article  Google Scholar 

  • Menge, B. and J. Sutherland (1987) Community regulation: variation in disturbance, competition, and predation in relation to environemntal stress and recruitment.American Naturalist 130: 730–757.

    Article  Google Scholar 

  • Meeuwig, J. and R. H. Peters (1996) Circumventing phosphorus in lake management: a comparison of chlorophyll-a predictions from land-use and phosphorus-loading models.Canadian Journal of Fisheries and Aquatic Sciences (in press)

  • Minagawa, M. and E. Wada (1984) Stepwise enrichment of15N along food chains: further evidence and the relation between15N and animal age.Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Murdoch, W. W. (1966) Community structure, population control, and competition—a critique.American Naturalist 100: 219–226.

    Article  Google Scholar 

  • Owens, N. J. P. (1987) Natural variations in15N in the marine environment.Advances in Marine Biology 24: 389–451.

    Article  Google Scholar 

  • Paine, R. T. (1980) Food webs: linkage, interaction strength and community infrastructure.Journal of Animal Ecology 49: 667–685.

    Google Scholar 

  • Paine, R. T. (1988) Food webs: road maps of interactions or grist for theoretical development.Ecology 69: 1648–1654.

    Article  Google Scholar 

  • Paine, R. T. (1992) Food-web analysis through field measurement of per capita interaction strength.Nature 355: 73–75.

    Article  Google Scholar 

  • Peters, R. H. (1977) The unpredictable problems of trophodynamics.Environmental Biology of Fishes 2: 97–101.

    Article  Google Scholar 

  • Peters, R. H. (1988) Some general problems for ecology illustrated by food web theory.Ecology 69: 1673–1676.

    Article  Google Scholar 

  • Pimm, S. L. (1980) Properties of food webs.Ecology 61: 219–225.

    Article  Google Scholar 

  • Pimm, S. L. (1982)Food webs. Chapman & Hall, New York.

    Google Scholar 

  • Pimm, S. L. and R. L. Kitching (1988) Food web patterns: trival flows or the basis of an active research program.Ecology 69: 1669–1672.

    Article  Google Scholar 

  • Pimm, S. L. and J. H. Lawton (1977) Number of trophic levels in ecological communities.Nature 268: 329–331.

    Article  Google Scholar 

  • Pimm, S. L. and J. H. Lawton (1978) On feeding on more than one trophic level.Nature 275: 542–544.

    Article  Google Scholar 

  • Pimm, S. L., J. H. Lawton and J. E. Cohen (1991) Food web patterns and their consequences.Nature 350: 669–674.

    Article  Google Scholar 

  • Polis, G. A. (1991) Complex trophic interactions in deserts: an empirical critique of food web theory.American Naturalist 138: 123–155.

    Article  Google Scholar 

  • Rigler, F. H. (1975) The concept of energy flow and nutrient flow between trophic levels. pp. 15–26.in W. H. Dobben and R. H. Lowe-McConnell (eds.)Unifying concepts in ecology. Junk, the Hague.

    Google Scholar 

  • Saunders, P. T. (1978) Population dynamics and the length of food chains.Nature 272: 189–190.

    Article  Google Scholar 

  • Sprules, W. G. and J. E. Bowerman (1988) Omnivory and food chain length in zooplankton food webs.Ecology 69: 418–426.

    Article  Google Scholar 

  • Vander Zanden, M. J. and J. B. Rasmussen (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout.Ecological Monographs (in press).

  • Wada, E., M. Terazaki, Y. Kabaya and T. Nemoto (1987)15N and13C abundances in the Antarctic Ocean with emphasis on the biogeochemcial structure of the food web.Deep-Sea Research 34: 829–841.

    Article  CAS  Google Scholar 

  • Wada, E., Y. Kabaya and Y. Kurihara (1994) Stable isotope structure of aquatic ecosystems.Journal of Bioscience 18: 483–499.

    Google Scholar 

  • Warren, P. H. (1995) Estimating morphologically determined connectance and structure for food webs of freshwater invertebrates.Freshwater Biology 33: 213–221.

    Article  Google Scholar 

  • Winemiller, K. O. (1990) Spatial and temporal variation in tropical fish trophic networks.Ecological Monographs 60: 331–367.

    Article  Google Scholar 

  • Yoshioka, T., E. Wada and H. Hayashi (1994) A stable isotope study on seasonal food web dynamics in a eutrophic lake.Ecology 75: 835–846.

    Article  Google Scholar 

  • Yodzis, P. (1981) The stability of real ecosystems.Nature 289: 674–676.

    Article  Google Scholar 

  • Yodzis, P. (1984) Energy flow and the vertical structure of real ecosystems.Oecologia 65: 86–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, R., Westcott, K., del Giorgio, P. et al. Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes. Res Popul Ecol 38, 283–287 (1996). https://doi.org/10.1007/BF02515738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515738

Key words

Navigation