Skip to main content
Log in

Dielectric single particle spectroscopy for measurement of dispersion

  • Cellular Engineering
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Measuring the frequency-dependent behaviour of single particles or biological cells in inhomogeneous and/or rotating electric fields is a sensitive method for characterising their dielectric properties. This technique is able to detect broad dispersion in the megahertz range of homogeneous artificial Sephadex G15 spheres. Recent progress has opened up the possibility of carrying out dielectric spectroscopy in cell culture media. Dielectrophoretic and electrorotational spectra of different cells in media of varying conductivity can only be explained by the introduction of dispersive cell compartments. The cytoplasm of animal cells typically exhibits a broad dispersion around 15 MHz and there is evidence for membrane dispersion around 50 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, W. M., Schwan, H. P., and Zimmermann, U. (1987): ‘Surface conductance and other properties of latex particles measured by electrorotation’,J. Phys. Chem.,91, pp. 5093–8

    Article  Google Scholar 

  • Asami, K., Takahashi, Y., andTakashima, S. (1990): ‘Frequency domain analysis of membrane capacitance of cultured cells (HeLa and myeloma) using the micropipette technique’,Biophys. J.,58, pp. 142–8

    Article  Google Scholar 

  • Asami, K., andYonezawa, T. (1996): ‘Dielectric behavior of wildtype yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz’,Biophys. J.,71, pp. 2192–200

    Article  Google Scholar 

  • Bao, J.-Z., Christopher, C. D., andSchmukler, R. E., (1993); ‘Impedance spectroscopy of human erythrocytes: System calibration and nonlinear modeling’,IEEE Trans. Biomed. Eng.,40/4, pp. 364–78

    Article  Google Scholar 

  • Bone, S., Lee, R. S., andHodgson, C. E. (1996): ‘Dielectric studies of intermolecular interactions in native DNA’,Biophys. Biochim. Acta,1306, pp. 93–7

    Google Scholar 

  • Egger, M., andDonath, E. (1995): ‘Electrorotation measurements of diamide induced platelet activation changes’,Biophys. J.,68, pp. 364–72

    Article  Google Scholar 

  • Fuhr, G., Glaser, R., andHagedorn, R. (1986): ‘Rotation of dielectrics in a rotating electric high-frequency field’,Biophys. J.,49, pp. 395–402

    Article  Google Scholar 

  • Fuhr, G., Glasser, H., Müller, T., andSchnelle, Th. (1994): ‘Cell manipulation and cultivation under a.c. electric field influence in highly conductive conductive culture media’,Biophys. Biochim. Acta,1201, pp. 353–60

    Google Scholar 

  • Fuhr, G., Glasser, H., Schnelle, Th., andShirley, S. G. (1995): ‘Dielectrophoretic field cages: technique for cell, virus and macromolecule handling’,Cell. Eng.,1, pp. 47–57

    Google Scholar 

  • Fuhr, G., Rösch, P., Müller, T., Dressler, V., andGöring, H. (1990): ‘Dielectric spectroscopy of chloroplasts isolated from higher plants—characterisation of the double-membrane system’,Plant Cell Physiol.,31, pp. 975–85

    Google Scholar 

  • Fuhr, G., Zimmermann, U., andShirley, L. G. (1996): ‘Cell motion in time-varying fields. principles and potential’ inZimmermann, U. andNeil, G. A. (Eds): ‘Electromanipulation of cells’ (CRC Press, Boca Raton, Florida) pp. 259–328

    Google Scholar 

  • Gimsa, J., Müller, T., Schnelle, Th., andFuhr, G. (1996): ‘Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm’,Biophys. J.,71, pp. 495–506

    Article  Google Scholar 

  • Gimsa, J., Schnelle, Th., Zechel, G., andGlaser, R. (1994): ‘Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin’,Biophys. J.,66, pp. 1244–53

    Article  Google Scholar 

  • Grosse, C., andShilov, V. N. (1996): ‘Theory of low frequency electrorotation of polystyrene particles in electrolyte solution’,J. Phys. Chem.,100, pp. 1771–8

    Article  Google Scholar 

  • Huang, Y., Hölzel, R., Pethig, R., andWang, X.-B. (1992): ‘Difference in AC electrodynamics of viable and nonviable yeast cells determined through combined dielectrophoresis and electrorotation’,Phys. Med. Biol.,37/7, pp. 1499–517

    Article  Google Scholar 

  • Hölzel, R. (1997): ‘Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz’,Biophys. J.,73, pp. 1103–8

    Article  Google Scholar 

  • Hornung, J., Müller, T., andFuhr, G. (1996): ‘Cryoconservation of anchorage-dependent mammalian cells on microstructures and silicon substrates’,Cryobiol.,33, pp. 260–70

    Article  Google Scholar 

  • Irimajiri, A., Suzaki, T., Asami, K., andHanai, T. (1991): ‘Dielectric modeling of biological cells. Models and Algorithm’,Bull. Inst. Chem. Res. Kyoto Univ.,69/4, pp. 421–38

    Google Scholar 

  • Jones, T. B. (1995): ‘Electromechanics of particles’ (Cambridge University Press, Cambridge)

    Google Scholar 

  • Kehle, Th., andHerzog, V. (1989): ‘A colloidal gold labeling technique for the direct determination of the surface area of eukaryotic cells’,Europ. J. Cell Biol.,48, pp. 19–29

    Google Scholar 

  • Klösgen, B., Reichle, Ch., Kohlsmann, S., andKramer, K. D. (1996): ‘Dielectric spectroscopy as a sensor of membrane head-group mobility and hydration’,Biophys. J.,71, pp. 3250–60

    Article  Google Scholar 

  • Maier, H. (1997): ‘Electrorotation of colloidal particles and cells depends on surface charge’,Biophys. J.,73, pp. 1617–26

    Article  Google Scholar 

  • Miura, N., Asaka, N., Shinyashiki, N., andMashimo, S. (1994): ‘Microwave dielectric study on bound water of globule proteins in aqueous solution’,Biopolymers,34, pp. 357–64

    Article  Google Scholar 

  • Pauly, H., andSchwan, H. P. (1966): ‘Dielectric properties and ion mobility in erythrocytes’,Biophys. J.,6, pp. 621–39

    Article  Google Scholar 

  • Pethig, R. (1996): ‘Dielectrophoresis: Using inhomogeneous ac electrical fields to separate and manipulate cells’,Crit. Rev. Biotechnol.,16, pp. 331–48

    Article  Google Scholar 

  • Pethig, R., andKell, D. B. (1987): ‘The passive electric properties of biological systems: their significance in physiology, biophysics and biotechnology’,Phys. Med. Biol.,32/8, pp. 933–70

    Article  Google Scholar 

  • Pohl, H. A. (1978): ‘Dielectrophoresis’ (Cambridge University Press, Cambridge)

    Google Scholar 

  • Prüger, B., Eppmann, P., andGimsa, J. (1998): ‘Particle characterisation by AC- electrokinentik phenomena. 3. New developments in electrorotational light scattering (ERLS)’,Coll. Surf. A,136/1–2, pp. 199–207

    Article  Google Scholar 

  • Schnelle, Th., Glasser, H., andFuhr, G. (1997): ‘An optoelectronic technique for automatic detection of electrorotational spectra of single cells’,Cell. Eng.,2/2, pp. 33–41

    Google Scholar 

  • Schwan, H. P., andTakashima, S. (1993): ‘Electrical conduction and dielectric behaviour in biological systems’,Encyclopedia Appl. Phys.,5, pp. 177–200

    Google Scholar 

  • Sukhorukov, V. L., Arnold, W. M., andZimmermann, U. (1993): ‘Hypotonically induced changes in the plasma membrane of cultured mammalian cells’,J. Membr. Biol.,132, pp. 27–40

    Google Scholar 

  • Sukhorukov, V. L., andZimmermann, U. (1996): ‘Electrorotation of Erythrocytes treated with Dipicrylamine: Mobile charges within the membrane show their “signature” in rotational spectra’,J. Membr. Biol.,153, pp. 161–9

    Article  Google Scholar 

  • Wang, J., Sukhorukov, V. L., Djuzenova, C. S., Zimmermann, U., Müller, T., andFuhr, G. (1997): ‘Electrorotational spectra of protoplasts generated from the giant marine alga valonia utricularis’,Protoplasma,196, pp. 123–43

    Article  Google Scholar 

  • Zimmermann, U., Gessner, P., Wander, M., andFoung, S. K. H. (1989): ‘Electroinjection and electrofusion in hypo-osmolar solution’, in:Borrebaeck, C. A. K. andHagen, I. (Eds): ‘Electromanipulation in hybridoma technology’, (Stockton, New York), pp. 1–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schnelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnelle, T., Müller, T. & Fuhr, G. Dielectric single particle spectroscopy for measurement of dispersion. Med. Biol. Eng. Comput. 37, 264–271 (1999). https://doi.org/10.1007/BF02513297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513297

Keywords

Navigation