Skip to main content
Log in

Analysis of the ST-T complex of the electrocardiogram using the Karhunen—Loeve transform: adaptive monitoring and alternans detection

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The Karhunen-Loève transform (KLT) is applied to study the ventricular repolarisation period as reflected in the ST-T complex of the surface ECG. The KLT coefficients provide a sensitive means of quantitating ST-T shapes. A training set of ST-T complexes is used to derive a set of KLT basis vectors that permits representation of 90% of the signal energy using four KLT coefficients. As a truncated KLT expansion tends to favor representation of the signal over any additive noise, a time series of KLT coefficients obtained from successive ST-T complexes is better suited for representation of both medium-term variations (such as ischemic changes) and short-term variations (such as ST-T alternans) than discrete parameters such as the ST level or other local indicaes. For analysis of ischemic changes, an adaptive filter is described that can be used to estimate the KLT coefficient, yielding an increase in the signal-to-noise ratio of 10 dB (u=0.1), with a convergence time of about three beats. A beat spectrum of the unfiltered KLT coefficient series is used for detection of ST-T alterans. These methods are illustrated with examples from the European ST-T Database. About 20% of records revealed quasi-periodic salvos of ischemic ST-T change episodes and another 20% exhibit repetitive, but not clearly periodic patterns of ST-T change episodes. About 5% of ischemic episodes were associated with ST-T alternans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselrod, S., Norymberg, M., Peled, I., Karabelnik, E., andGreen, M. S. (1987): ‘Computerized analysis of ST segment changes in ambulatory electrocardiograms’,Med. Biol. Eng. Comput.,25, pp. 513–519

    Article  Google Scholar 

  • Bazzett, H. C. (1920): ‘An analysis of the time relation of electrocardiograms’,Heart,7, pp. 353–370

    Google Scholar 

  • Berbari, E., andLazzara, R. (1988): ‘An introduction to high-resolution ECG recordings of cardiac late potentials’,Arch. Intern. Med.,148, pp. 1859–1863

    Article  Google Scholar 

  • Breithardt, G., Cain, M. E., El-Sherif, N., Flowers, N., Hombach, V., Janse, M., Simson, M., andSteinbeck, G. (1991): ‘Standards for analysis of ventricular late potentials using high resolution or signal-averaged electrocardiography’,J. Am. Coll. Cardiol.,17, pp. 999–1006

    Google Scholar 

  • Clancy, E. A., Smith, J. M., andCohen, R. J. (1991): ‘A simple electrical-mechanical model of the heart applied to the study of electrical-mechanical alternans’,IEEE Trans.,BME-38, (6), pp. 551–560

    Google Scholar 

  • DeBoer, R. W., Karemaker, J. M., andStrackee, J. (1984): ‘Comparative spectra of series of point element particularly for heart rate variability data’,IEEE Trans.,BME-31, pp. 384–387

    Google Scholar 

  • Feuer, A., andWeinstein, E. (1985): ‘Convergence analysis of LMS filters with uncorrelated Gaussian data’,IEEE Trans. Acoust. Speech Signal Process.,33, pp. 222–230

    Article  Google Scholar 

  • Gallino, A., Chierchia, S., Smith, G., Croom, M., Morgan, M., Marchesi, C., andMaseri, A. (1984): ‘Computer system for analysis of ST segment changes on 24 hour Holter monitor tapes: Comparison with other available systems’,J. Am. Coll. Cardiol.,4, (2), pp. 245–252

    Article  Google Scholar 

  • Gracia, J. (1988): ‘Sistema de monitorización y detección de isquemia basado en la transformada de Karhunen-Loève aplicada sobre el ECG (in Spanish). Ph.D. thesis, Universidad de Zaragoza, Zaragoza

    Google Scholar 

  • Haddad, R. A., andParsons, T. W. (1991): ‘Digital signal processing. Theory, applications and hardward’ (Computer Science Press, New York)

    Google Scholar 

  • Jager, F. J., Mark, R. G., Moody, G. B., andDivjak, S. (1992): ‘Analysis of transient ST segment changes during ambulatory monitoring using the Karhunen-Loève transform’,in ‘Computers in cardiology’ (IEEE Computer Society Press) pp. 691–694

  • Klieger, R. E., Miller, J. P., Bigger, J. T., andMoss, A. M. (1984): ‘Heart rate variability: a variable predicting mortality following acute myocardial infarction’,J. Coll. Cardiol.,3, p 2

    Google Scholar 

  • Laguna, P., Jané, R., andCaminal, P. (1994): ‘Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database’,Comput. Biomed. Res.,27, (1), pp. 45–60

    Article  Google Scholar 

  • Laguna, P., Jané, R., Meste, O., Poon, P. W., Caminal, P., Rix, H., andThakor, N. V. (1992): ‘Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques’,IEEE Trans.,BME-39, (10), pp. 1032–1044

    Google Scholar 

  • Laguna, P., Jané, R., Olmos, S., Thakor, N. V., Rix, H., andCaminal, P. (1996a): ‘Adaptive estimation of QRS complex by the Hermite model for classification and ectopic beat detection’,Med. Biol. Eng. Comput.,34, pp. 58–68

    Article  Google Scholar 

  • Laguna, P., Ruiz, M., Moody, G. B., andMark, R. G. (1996b): ‘Repolarization alternans detection using the KL transform and the beatquency spectrum’,in ‘Computers in cardiology’ (IEEE Computer Society Press) pp. 673–676

  • Laguna, P., Mark, R., Goldberger, A., andMoody, G. (1997): ‘A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG’,in ‘Computers in cardiology’ (IEEE Computer Society Press)

  • Laguna, P., Moody, G. B., andMark, R. (1998): ‘Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals’,IEEE Trans. Signal Process.,45, (6), pp. 698–715

    Google Scholar 

  • Lynn, P. A. (1977): ‘Online digital filters for biological signals: Some fast designs for a small computer’Med. Biol. Eng. Comput.,15, pp. 534–540

    Article  Google Scholar 

  • Merri, M., Alberti, M., andMoss, A. J. (1993): ‘Dynamic analysis of ventricular repolarization duration from 24-hour Holter recordings’IEEE Trans.,BME-40, (20), pp. 1219–1225

    Google Scholar 

  • Meyer, C. R., andKeiser, H. N. (1977): ‘Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques’,Comput. Biomed. Res.,10, pp. 459–470

    Article  Google Scholar 

  • Moody, G. B., andMark, R. G. (1982): ‘Development and evaluation of a 2-lead ECG analysis program’,in ‘Computers in cardiology’ (IEEE Computer Society Press) pp. 39–44

  • Moody, G. B., andMark, R. G. (1990a): ‘The MIT-BIH arrhythmia database on CD-ROM and software for use with it’,in ‘Computers in cardiology’ (IEEE Computer Society Press) pp. 185–188

  • Moody, G. B., andMark, R. G. (1990b): ‘QRS morphology representation and noise estimation using the Karhunen-Loève transform’,in ‘Computers in cardiology’ (IEEE Computer Society Press) pp. 269–272

  • Myers, G., Martin, G., Magid, N., Barnett, P., Schaad, J., Weiss, J., Lesch M., andSinger, D. H. (1986): ‘Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods’,IEEE Trans.,BME-33, (12), pp. 1149–1156

    Google Scholar 

  • Puddu, P. E., andBourassa, M. G. (1986): ‘Prediction of sudden death from QTc interval prolongation in patients with chronic ischemic disease’,J. Electrocardiol.,19, (3), pp. 1203–212

    Article  Google Scholar 

  • Rosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., andCohen, R. J. (1994): ‘Electrical alternans and vulnerability to ventricular arrhythmias’,New Engl. J. med.,330, (4), pp. 235–241

    Article  Google Scholar 

  • Speranza, G., Nollo, G., Ravelli, F., andAntolini, R. (1993): ‘Beat-to beat measurement and analysis of the R-T interval in 24h ECG Holter recordings’,Med. Biol. Eng. Comput.,31, (5), pp. 487–494

    Article  Google Scholar 

  • Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G. B., Zeelenberg, C., andMarchesi, C. (1992): ‘The European ST-T database: standards for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography’,Eur. Heart J.13, pp. 1164–1172

    Google Scholar 

  • Thakor, N. V., Guo, X., Vaz, G. A., Laguna, P., Jané, R., Caminal, P., Rix, H., andHanley, D. (1993): ‘Orthonormal (Fourier and Walsh) models of time-varying evoked potentials in neurological injury’,IEEE Trans.,BME-40, (3), pp. 213–221

    MathSciNet  Google Scholar 

  • Thakor, N. V., Webster, J. G., andTompkins, W. J. (1984): ‘Estimation of QRS complex power spectrum for design of a QRS filter’,IEEE Trans.,BME-31, (11), pp. 702–706

    Google Scholar 

  • Widrow, B., andStearns, S. D. (1985): ‘Adaptive signal processing’ (Prentice-Hall, Englewood Cliffs, New Jersey)

    MATH  Google Scholar 

  • Zhong, J., andLu, W. (1991): ‘On two weighted signal averaging methods and their application to the surface detection of cardiac micropotentials’,Comput. Biomed. Res.,24, pp. 332–343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Laguna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laguna, P., Moody, G.B., García, J. et al. Analysis of the ST-T complex of the electrocardiogram using the Karhunen—Loeve transform: adaptive monitoring and alternans detection. Med. Biol. Eng. Comput. 37, 175–189 (1999). https://doi.org/10.1007/BF02513285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513285

Keywords

Navigation