Skip to main content
Log in

Microbody defective mutants of arabidopsis

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In germinating fatty seedlings, microbodies are differentiated to leaf peroxisomes from glyoxysomes during greening, and then transformed to glyoxysomes from leaf peroxisomes during senescence. These transformations of microbodies are regulated at various level, such as gene expression, splicing of the mRNA and degradation of microbody proteins. In order to clarify the regulatory mechanisms underlying these transformations of microbodies, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid β-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designatedped1, ped2, andped3, respectively (whereped stands for peroxisome defective). The characteristics of theseped mutants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeching, J.R. andNorthcote, D.H. 1987. Nucleic acid (cDNA) and amino acid sequences of isocitrate lyase from castor bean. Plant Mol. Biol.8: 471–475.

    Article  CAS  Google Scholar 

  • Comai, L., Baden, C.S. andHarada, J.J. 1989. Deduced sequence of a malate synthase polypeptide encoded by a subclass of the gene family. J. Biol. Chem.264: 2778–2782.

    PubMed  CAS  Google Scholar 

  • De Bellis, L. andNishimura, M. 1991. Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol.32: 555–561.

    Google Scholar 

  • De Bellis, L., Tsugeki, R. andNishimura, M. 1991. Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin (Cucurbita sp.) during senescence. Plant Cell Physiol.32: 1227–1235.

    Google Scholar 

  • Gietl, C. 1990. Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Proc. Natl. Acad. Sci. USA87: 5773–5777.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.-A.A. andSubramani, S. 1987. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell. Biol.105: 2923–2931.

    Article  PubMed  CAS  Google Scholar 

  • Graham, I.A., Smith, L.M., Brown, J.W., Leaver, C.J. andSmith, S.M. 1989. The malate synthase gene of cucumber. Plant Mol. Biol.13: 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Greenler, J.M., Sloan, J.S., Schwartz, B.W. andBecker, W.M. 1989. Isolation, characterization and sequence analysis of a full-length cDNA clone encoding NADH-dependent hydroxypyruvate reductase from cucumber. Plant Mol. Biol.13: 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., De Bellis, L., Yamaguchi, K., Kato, A., Mano, S., Hayashi, M. andNishimura, M. 1998a. Molecular characterization of a glyoxysomal long-chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J. Biol. Chem.273: 8301–8307.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M., Aoki, M., Kato, A., Kondo, M. andNishimura, M. 1996a. Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J.10: 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M., Aoki, M., Kondo, M. andNishimura, M. 1997. Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol.38: 759–768.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Toriyama, K., Kondo, M. andNishimura, M. 1998b. 2,4-Dicholorophenoxybutyric acid-resistant mutants of Arabidopsis have defects on glyoxysomal fatty acid β-oxidation. Plant Cell10: 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M., Tsugeki, R., Kondo, M., Mori, H. andNishimura, M. 1996b. Pumpkin hydroxypyruvate reductases with and without a putative C-terminal signal for targeting to microbodies may be produced by alternative splicing. Plant Mol. Biol.30: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M., Kondo, M., andNishimura, M. 1996a. Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell8: 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M., Mori, H. andNishimura, M. 1995. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. Plant Mol. Biol.27: 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M., Takeuchi, Y. andNishimura, M. 1996b. cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. Plant Mol. Biol.31: 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Takeda-Yoshikawa, Y., Hayashi, M., Kondo, M., Hara-Nishimura, I. andNishimura, M. 1998. Glyoxysomal malate dehydrogenase in pumpkin: cloning of a cDNA and functional analysis of its prosequence. Plant Cell Physiol.39: 186–195.

    PubMed  CAS  Google Scholar 

  • Keller, G.A., Krisans, S., Gould, S.J., Sommer, J.M., Wang, C.C., Schliebs, W., Kunau, W., Brody, S. andSubramani, S. 1991. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J. Cell. Biol.114: 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Mano, S., Hayashi, M., Kondo, M. andNishimura, M. 1996. cDNA cloning and expression of a gene for isocitrate lyase in pumpkin cotyledons. Plant Cell Physiol.37: 941–948.

    PubMed  CAS  Google Scholar 

  • Mori, H., Takeda-Yoshikawa, Y., Hara-Nishimura, I. andNishimura, M. 1991. Pumpkin malate synthase: Cloning and sequencing of the cDNA and Northern blot analysis. Eur. J. Biochem.197: 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, M., Hayashi, M., Kato, A., Yamaguchi, K. andMano, S. 1996. Functional transformation of microbodies in higher plant cells. Cell Struct. Funct.21: 387–393.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, M., Takeuchi, Y., De Bellis, L. andHara-Nishimura, I. 1993. Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma175: 131–137.

    Article  Google Scholar 

  • Nishimura, M., Yamaguchi, J., Mori, H., Akazawa, T. andYokota, S. 1986. Immunocytochemical analysis shows that glyoxysomes are directly transformed to leaf peroxisomes during greening of pumpkin cotyledons. Plant Physiol.80: 313–316.

    Article  Google Scholar 

  • Preisig-Muller, R., Guhnemann-Schafer, K. andKindl, H. 1994. Domains of the tetrafunctional protein acting in glyoxysomal fatty acid beta-oxidation. Demonstration of epimerase and isomerase activities on a peptide lacking hydratase activity. J. Biol. Chem.269: 20475–20481.

    PubMed  CAS  Google Scholar 

  • Preisig-Muller, R. andKindl, H. 1993. Thiolase mRNA translatedin vitro yields a peptide with a putative N-terminal presequence. Plant Mol. Biol.22: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, D., Ginger, R.S., Baker, A. andNorthcote, D.H. 1990. Nucleotide sequence analysis of a cDNA clone encoding malate synthase of castor bean (Ricinus communis) reveals homology to DAL7, a gene involved in allantoin degradation inSaccharomyces cerevisiae. Plant Mol. Biol.15: 501–504.

    Article  PubMed  CAS  Google Scholar 

  • Titus, D.E. andBecker, W.M. 1985. Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell. Biol.101: 1288–1299.

    Article  PubMed  CAS  Google Scholar 

  • Tsugeki, R., Hara-Nishimura, I., Mori, H. andNishimura, M. 1993. Cloning and sequencing of cDNA for glycolate oxidase from pumpkin cotyledons and Northern blot analysis. Plant Cell Physiol.34: 51–57.

    PubMed  CAS  Google Scholar 

  • Turley, R.B., Choe, S.M., Ni, W. andTrelease, R.N. 1990a. Nucleotide sequence of cottonseed malate synthase. Nucleic Acids Res.18: 3643.

    PubMed  CAS  Google Scholar 

  • Turley, R.B., Choe, S.M. andTrelease, R.N. 1990b. Characterization of a cDNA clone encoding the complete amino acid sequence of cotton isocitrate lyase. Biochim. Biophys. Acta1049: 223–226.

    PubMed  CAS  Google Scholar 

  • Volokita, M. andSomerville, C.R. 1987. The primary structure of spinach glycolate oxidase deduced from the DNA sequence of a cDNA clone. J. Biol. Chem.262: 15825–15828.

    PubMed  CAS  Google Scholar 

  • Wain, R.L. andWightman, F. 1954. The growth-regulating activity of certain ω-substituted alkyl carboxylic acids in relation to their β-oxidation within the plant. Proc. Roy. Soc. Lond. Biol. Sci.142: 525–536.

    Article  CAS  Google Scholar 

  • Zhang, J.Z., Gomez, P.M., Baden, C.S. andHarada, J.J. 1993. Two classes of isocitrate lyase genes are expressed during late embryogeny and postgermination inBrassica napus L. Mol. Gen. Genet.238: 1770184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, M., Hayashi, M., Toriyama, K. et al. Microbody defective mutants of arabidopsis. J. Plant Res. 111, 329–332 (1998). https://doi.org/10.1007/BF02512192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512192

Key words

Navigation