Skip to main content
Log in

Model of respiratory sensation and wilful control of ventilation

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A mathematical model has been developed that includes sensations of breathlessness and a dynamic CO2 respiratory controller. Breathing sensations, which are represented as a discomfort index, are assumed to depend on arterial PCO2 level, automatic and wilful motor commands and mechanoreceptor feedback. Wilful control is assumed to arise from cortical centres of the brain and is independent of the reflex control system. The bulbopontine respiratory controller produces the automatic motor command, which is determined by chemical and mechanical feedback. Simulations demonstrate how the controller output and breathing sensations change when wilful motor commands disturb spontaneous breathing. Simulations include isocapnic hyper- and hypoventilation and deliberate hypoventilation during CO2 rebreathing. Simulations are compared with experimental data from human subjects. Simulations predict that the discomfort index intensifies when ventilation is either voluntarily raised or lowered from the optimal level; and discomfort is greater when ventilation is lowered than when it is raised at a given level of PCO2. The simulated results agree with those obtained experimentally. The simulations suggest that respiratory drive integration may depend not only on the direct effects of chemical and mechanical feedback, but also on the perceptual consequences of these stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, L., Lane, R., Shea, S. A., Cockcroft, A., andGuz, A. (1985): ‘Breathlessness during different forms of ventilatory stimulations: a study of mechanisms in normal subjects and respiratory patterns,’Clin. Sci. Lond.,69, pp. 663–672

    Google Scholar 

  • Adams, L., Chronos, N., Lane, R. andGuz, A. (1986): ‘The measurement of breathlessness induced in normal subjects: individual differences,’ibid. 70, pp. 131–140

    Google Scholar 

  • Banzett, R. B., Lansing, R. W., Reid, M. B., Adams, L., andBrown, R. (1989): ‘Air hunger' arising from increased PCO2 in mechanically ventilated quadriplegics,’Respir. Physiol.,76, pp. 53–68

    Article  Google Scholar 

  • Bellville, J. W., Whipp, B. J., Kaufman, R. D., Swanson, G. D., Aqleh, A., andWiberg, D. M. (1979): ‘Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects,’J. Appl. Physiol.,46, pp. 843–853

    Google Scholar 

  • Chonan, T., Mulholland, M. B., Cherniack, N. S., andAltose, M. D. (1987): ‘Effects of constraining thoracic displacement and changes in chemical drive on the sensation of dyspnea,’ibid.,63, pp. 1822–1828

    Google Scholar 

  • Chonan, T., ElHefnawy, A. M., Simonetti, O. P., andChernlack, N. S. (1988): ‘Rate of elimination of excess CO2 in humans,’Respir. Physiol.,73, pp. 379–394

    Article  Google Scholar 

  • Chonan, T., Mulholland, M. B., Leitner, J., Altose, M. D., andCherniack, N. S. (1990): ‘Sensation of dyspnea during hypercapnia, exercise and voluntary hyperventilation,’J. Appl. Physiol.,68, pp. 2100–2106

    Article  Google Scholar 

  • Chonan, T., Mulholland, M. B., Altose, M. D., andCherniack, N. S. (1990): ‘Effects of changes in level and pattern of breathing on the sensation of dyspnea,’ibid.,,69, pp. 1290–1295

    Google Scholar 

  • Davenport, P. W., Frieman, W. A., Thompson, F. J. andFranzen, O. (1986): ‘Respiratory-related cortical potentials evoked by inspiratory occlusion in humans,’J. Appl. Physiol.,60, pp. 1843–1848

    Google Scholar 

  • Engeman, R. M., andSwanson, G. D. (1979): ‘Transient response of the Gemen-Miller respiratory oscillator model,’ibid.,,46, pp. 1191–1195

    Google Scholar 

  • Gandevia, S. C., andRothwell, J. C. (1987): ‘Activation of the human diaphragm from the motor cortex,’J. Physiol. 384, pp. 109–118

    Google Scholar 

  • Gandevia, S. C., andMacefield, G. (1989): ‘Projection of lowthreshold afferents from human interconstal muscles to the cerebral cortex,’Respir. Physiol. 77, pp. 203–214

    Article  Google Scholar 

  • Killian, K. J., Mahutte, K., andCampbell, E. J. M. (1981): ‘Magnitude scaling of externally added loads to breathing,’Am. Rev. Respir. Dis.,123, pp. 12–15

    Google Scholar 

  • Killian, K. J., andCampbell, E. J. M. (1983): ‘Dypsnea and exercise,’Annu. Rev. Physiol.,45, pp. 465–479

    Article  Google Scholar 

  • Killian, K. J., Gandevia, S. C., Summers, E., andCampbell, E. J. M. (1984): ‘Effect of increased lung volume on perception of breathlessness, effort, and tension,’J. Appl. Physiol.,57, pp. 686–691

    Google Scholar 

  • Murphy, K., Mier, A., Adams, L., andGuz, A. (1990): ‘Putative cerebral control involvement in the ventilatory response to inhaled CO2 in conscious man,’J. Physiol.,420, pp. 1–18

    Google Scholar 

  • Oku, Y., andSaidel, G. M. (1991): ‘Sensation and control of breathing: a dynamic model,’Ann. Biomed. Eng.,19, pp. 251–272

    Google Scholar 

  • Orem, J., andNetick, A. (1986): ‘Behavioral control of breathing in the cat,’Brain Res.,366, pp. 238–253

    Article  Google Scholar 

  • Plum, F. (1970): ‘Neurological integration of behavioral and metabolic control of breathing’in Porter, R. (Ed.): ‘Breathing, Hering-Breuer centenary symposium’ (Churchill, London) pp. 159–175

    Google Scholar 

  • Remers, J. E., Brooks, J. G., andTenney, S. M. (1968): ‘Effect of controlled ventilation on the tolerable limit of hypercapnia,’Respir. Physiol. 4, pp. 78–90

    Article  Google Scholar 

  • Schwartzstein, R. M. Simon, P. M., Weiss, J. W., Fencl, V., andWeinberger, S. E. (1989): ‘Breathlessness induced by dissociation between ventilation and chemical drive,’Am. Rev. Respir. Dis.,139, pp. 1231–1237

    Google Scholar 

  • Shannon, R. (1986): ‘Reflexes from respiratory muscles and costvertebral joints,’in Cherniak, N. S., andWiddicombe, J. G. (Eds.): ‘Handbook of physiology, Section 3: the respiratory system, Vol. II: Control of breathing’ (Am. Physiol. Soc., Washington, DC) pp. 431–447

    Google Scholar 

  • Wasserman, K., Whipp, B. J., andCasaburi, R. (1986): ‘Respiratory control during exercise,’in Cherniack, N. S. andWiddicombe, J. G. (Eds.): ‘Handbook of physiology, Section 3: the respiratory system, Vol. II: Control of breathing’ (Am. Physiol, Soc., Washington, DC), pp. 595–619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oku, Y., Saidel, G.M., Cherniack, N.S. et al. Model of respiratory sensation and wilful control of ventilation. Med. Biol. Eng. Comput. 33, 252–256 (1995). https://doi.org/10.1007/BF02510496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510496

Keywords

Navigation