Skip to main content
Log in

Simulation study for the transition from spindles to spike and wave epileptogenesis

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A mathematical model is presented, based on existing anatomical and physiological data, which simulates the behaviour of representative types of cortical cells. It is used to test whether a set of synaptic connections of these cells exists, which, paced by the same rhythmical thalamic input, could produce spindles under normal conditions and spike and wave discharges (SW) under conditions of cortical hyperexcitability. This is possible if the interneurons do not provide recurrent excitatory or inhibitory input on themselves, if the thalamic afferents contact the cortical projecting pyramidal cells through local excitatory neurons, and if the inhibitory interneurons receive input only from the pyramidal cells. The results suggest that an increase of all cortical synaptic actions (both excitatory and inhibitory) is sufficient for the transition from spindles to the first stages in the development of SW discharges in the cortex, whereas the thalamus can be driven to the SW characteristic frequency at the immediate next stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avoli, M., Gloor, P., Kostopoulos, G., andNaquet, R. (Eds) (1990): ‘Generalized epilepsy: neurobiological approaches’ (Birkhauser, Boston)

    Google Scholar 

  • Connors, B. W., andGutnick, M. J. (1990): ‘Intrinsic firing patterns of diverse neocortical neurons’,Trends Neurosci.,13, (3), pp. 99–104

    Article  Google Scholar 

  • Connors, B. W., Malenka, R. C., andSilva, L. R. (1988): ‘Two inhibitory postsynaptic potentials and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat’,J. Neurophysiol.,406, pp. 443–468

    Google Scholar 

  • Coulter, D. A., andLee C. J. (1993): ‘Thalamocortical rhythm generation in vitro: extra- and intracellular recordings in mouse thalamocortical slices perfused with low Mg2+ medium’,Brain Res.,631, pp. 137–142

    Article  Google Scholar 

  • Creutzfeldt, O., andHouchin, J. (1974): ‘Neuronal basis of EEG waves’in Remond, A., andCreutzfeldt, O. (Eds.): ‘Handbook of electroencephalography and clinical neurophysiology’ Vol. 20 (Elsevier, New York) pp. 5–55

    Google Scholar 

  • Douglas, R. J., andMartin, K. A. C. (1990): ‘Neocortex’in Shepherd, G. M. (Ed.): ‘The Synaptic Organization of the Brain’ (Oxford University Press, New York) pp. 389–438

    Google Scholar 

  • Fisher, R. S., andPrince, D. A. (1977): ‘Spike-wave rhythms in cat cortex induced by parental penicillin. II. Cellular features’,Electroenceph. Clin. Neurophysiol.,42, pp. 625–639

    Article  Google Scholar 

  • Gloor, P. (1979): ‘Generalized epilepsy with spike and wave discharges: a reinterpretation of its electrographic and clinical manifestations’,Epilepsia,20, pp. 571–588

    Google Scholar 

  • Gloor, P., Pelegrini, A., andKostopoulos, G. (1979): ‘Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of cat’,Electroenceph. Clin. Neurophysiol.,46, pp. 274–289

    Article  Google Scholar 

  • Gloor, P., andFariello, R. G. (1988): ‘Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy’,Trends Neurosci.,11, pp. 63–68

    Article  Google Scholar 

  • Gloor, P., Avoli, M., andKostopoulos, G. (1990): ‘Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge’ inAvoli, M.,et al., (Eds.): ‘Generalized epilepsy: neurobiological approaches’, (Birkhauser, Boston) pp. 190–212.

    Google Scholar 

  • Herkenham, M. (1986): ‘New perspectives on the organization and evolution of nonspecific thalamocortical projections’in Jones et al., (Eds.): ‘Cerebral cortex’, (Plenum Press, New York) pp 403–445

    Google Scholar 

  • Jasper, H., andDroogleever-Fortuyn, J. (1946): ‘Experimental studies of the functional anatomy of petit mall epilepsy’,Res. Publ. Assoc. Res. Nerv. Ment. Dis.,26, pp. 272–298

    Google Scholar 

  • Kostopoulos, G., Gloor, P., Pelegrini, A., andGotman, J. (1981): ‘A study of the transition from spindles to spike and wave discharges in feline generalized penicillin epilepsy. Microphysiological features’,Exper. Neurol.,73, pp. 55–77.

    Article  Google Scholar 

  • Kostopoulos, G. (1982): ‘Potentiation and modification of recruiting responses precedes the appearance of spike and wave discharges in feline generalized penicillin epilepsy’,Electroencephal. Clin. Neurophysiol.,53, pp. 467–478

    Article  Google Scholar 

  • Kostopoulos, G., andGloor, P. (1982): ‘A mechanism for spike-wave discharge in the feline penicillin epilepsy and its relationship to spindle generation’in Sterman, M. B., Passouant, P., andShouse, N. (Eds.): ‘Sleep and epilepsy’ (Academic Press, New York), pp. 11–27

    Google Scholar 

  • Kostopoulos, G., Avoli, M., andGloor, P. (1983): ‘Participation of cortical recurrent inhibition in the genesis of spike and wave discharge in feline generalized penicillin epilepsy’,Brain Res.,267, pp. 101–112

    Article  Google Scholar 

  • Kostopoulos, G., andAntoniadis, G. (1991): ‘A comparison of recurrent inhibition and of paired-pulse facilitation in hippocampal slices from normal and genetically epileptic mice’,Epilepsy Res.,9, (3), pp. 184–194

    Article  Google Scholar 

  • Kostopoulos, G., andAntoniadis, G. (1992): ‘Active role of cortical inhibition in the development of generalized epilepsy with spike and wave discharges: Evidence from electrophysiological, microiontophoretic and simulation studies’in Avanzini, G., Engel J. Jr., Fariello, R., andHeinemann, U. (Eds.), ‘Neurotransmitter in epilepsy: epilepsy research supplement vol.’ (Elsevier, New York) pp. 125–133

    Google Scholar 

  • Knowles, D., Traub, R., Wong, R., andMiles, R. (1985): ‘Properties of neural networks: experimentation and modeling of the epileptic hippocampal slice’,Trends Neurosci.,8, (2), pp. 73–79

    Article  Google Scholar 

  • Lytton, W., andSejnowski, T. (1991): ‘Simulation of cortical pyramidal neurons synchronized by inhibitory interneurons’,J. Neurophysiol.,66, (3), pp. 1059–1079

    Google Scholar 

  • McCormick, D., Connors, B., Lighthall, J., andPrince, D. (1985): ‘Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex’,J. Neurophysiol.,54, pp. 782–806

    Google Scholar 

  • McCormick, D., andPrince, D. (1987): ‘Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones’,J. Neurophysiol.,393, pp. 743–762

    Google Scholar 

  • Nowack, W., andTheodoridis, G. (1991): ‘The thalamocortical contribution to epilepsy’,Bull. Math. Biol.,53, (4), pp. 505–523

    Google Scholar 

  • Steriade, M., andLlinas, R. (1988): ‘The functional states of the thalamus and the associated neuronal interplay’,Physiological Rev.,68, (3), pp. 649–742

    Google Scholar 

  • Steriade, M., Dossi, R., andNunez, A. (1991): ‘Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression’,J. Neurosci.,11, (10), pp. 3200–3217

    Google Scholar 

  • Sutor, B., andHablitz, J. J. (1989): ‘EPSPs in rat neocortical neurons in vitro. 1. Electrophysiological evidence for two distinct EPSPs’,J. Neurophysiol.,61, (3), pp. 607–624

    Google Scholar 

  • Walmsley, B., andStuklis, R. (1989): ‘Effects of spatial and temporal dispersion of synaptic input on the time course of synaptic potentials’,J. Neurophysiol.,61, (4), pp. 681–687

    Google Scholar 

  • White, E. L. (1986): ‘Termination of thalamic afferents in the cerebral cortex’in Jones et al. (Eds.): ‘Cerebral-cortex’, pp. 271–289.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniadis, G., Kostopoulos, G. Simulation study for the transition from spindles to spike and wave epileptogenesis. Med. Biol. Eng. Comput. 33, 241–246 (1995). https://doi.org/10.1007/BF02510494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510494

Keywords

Navigation