Skip to main content
Log in

The pumping discharge for XeCl lasers

  • Published:
Russian Physics Journal Aims and scope

Abstract

This paper presents the results of experimental studies on the homogeneity of a discharge in aNe−Xe−HCl gas mixture at a pressure of 2 atm in relation to the discharge current density, the cathode material (Al, Cu, Ti), and the mode of preconditioning of the cathode. With freshCu electrodes, a discharge of current density j∼50 A/cm2 with no cathode spot has been generated. Upon prolonged preconditioning ofAl andCu electrodes, a homogeneous discharge with j>100 A/cm2 and a high density of cathode spots has been realized. The results of numerical calculations based on a plasma model which allows for more than 300 plasma chemical reactions agree well with experiment. The plasma particle densities and the rates of death and birth of charged species are presented as functions of time. The physical processes occurring in the discharge plasma are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Makarov, J. Bonnet, and D. Pigach, J. Appl. Phys. B.,66, 417–426 (1998).

    Article  ADS  Google Scholar 

  2. B. Lacur, H. Brunet, H. Becaucelle, and C. Gagnol, Proc. SPIE.,1810, 498 (1992).

    Google Scholar 

  3. Yu. Bychkov, M. L. Vinnik, and M. K. Makarov, Kvant. Elektr.,19, 542–543 (1992).

    Google Scholar 

  4. M. Makarov, Rev. Sci. Instrum.,68, 3975–3988 (1997).

    Article  ADS  Google Scholar 

  5. R. Dreiskemper and W. Botticher, IEEE Trans. Plasma Sci.,23, 987–995 (1995).

    Article  Google Scholar 

  6. R. Riva, M. Legentill, S. Pasquires, and V. Puech, J. Phys. D.: Appl. Phys.,28, 856 (1995).

    Article  ADS  Google Scholar 

  7. Yu. Bychkov, I. Kostyrina, M. Makarov, A. Suslov, and A. Yastremsky, Rev. Sci. Instrum.,65, 793–798 (1994).

    Article  ADS  Google Scholar 

  8. M. Makarov, J. Phys. D.: Appl. Phys.,28, 1083–1093 (1995).

    Article  ADS  Google Scholar 

  9. T. H. Jonson, L. J. Palumbo, and A. M. Hunter, IEEE J. Quant. Electr.,QE15, 289 (1979).

    Article  ADS  Google Scholar 

  10. K. Fletcher, Numerical Methods Based on the Galerkin Method [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  11. W. Botticher, H. Luck, S. Neisner, and A. Schwabedisson, J. Appl. Phys. B.,B54, 295 (1992).

    Article  ADS  Google Scholar 

  12. Yu. I. Bychkov and A. G. Yastremsky, Opt. Atmosf. Okeana,11, 156–159 (1998).

    Google Scholar 

  13. Yu. I. Bychkov and A. Yastremsky, Proc. SPIE,3403, 89–95 (1998).

    ADS  Google Scholar 

  14. Yu. I. Bychkov, M. K. Makarov, S. A. Yampolskaya, and A. G. Yastremsky, Opt. Atmosf. Okeana,11, 149 (1998).

    Google Scholar 

Download references

Authors

Additional information

Institute of High-Current Electronics, Siberian Division of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 76–86, April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bychkov, Y.I., Gorchakov, S.L., Yampolskaya, S.A. et al. The pumping discharge for XeCl lasers. Russ Phys J 43, 412–421 (2000). https://doi.org/10.1007/BF02508526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508526

Keywords

Navigation