Skip to main content
Log in

Immunocytochemical and chemical analyses of Golgi vesicles isolated from the germinated pollen ofCamellia japonica

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

As a first step towards studying the biochemical relationship between Golgi vesicles (GVs) and tube wall components, isolation of GVs from the growing pollen tubes ofCamellia japonica was attempted using a centrifugation method with mannitol. The isolated GV was identified ultrastructurally and immunocytochemically. The main components of the GV were proteins and carbohydrates. The main monosaccharides of GV polysaccharides were galactose, arabinose and uronic acid, and pectins and arabinogalactan proteins also were detected immunochemically. An antiserum against the isolated GVs reacted with the outer layer of the pollen tube wall and the intine layers of the grain wall as well as thein situ GVs in the pollen tube and the grain cytoplasm. We have thus successfully isolated GVs and shown that they contain pectic substances and arabinogalactan proteins which contribute to formation of the pollen tube primary wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bracker, C.E., Rulz-Herrera, J. andBartnicki-Garcla, S. 1976. Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc. Natl. Acad. Sci. USA73: 4570–4574.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem.72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Engels, F.M. 1973. Function of Golgi vesicles in relation to cell wall synthesis in germinating petunia pollen. I. Isolation of Golgi vesicles. Acta. Bot. Neerl.22: 6–13.

    Google Scholar 

  • Engels, F.M. 1974a. Function of Golgi vesicles in relation to cell wall synthesis in germinating petunia pollen. II. Chemical composition of Golgi vesicles and pollen tube wall. Acta. Bot. Neerl.23: 81–89.

    CAS  Google Scholar 

  • Engels, F.M. 1974b. Function of Golgi vesicles in relation to cell wall synthesis in germinating petunia pollen. IV. Identification of cellulose in pollen tube walls and Golgi vesicles by X-ray diffraction. Acta. Bot. Neerl.23: 209–215.

    Google Scholar 

  • Dickinson, H.G. andLawson, J. 1975. The growth of the pollen tube wall inOenothera organensis. J. Cell Sci.18: 519–532.

    PubMed  CAS  Google Scholar 

  • Dubois, M., Gills, K.A., Hamilton, J.K., Rebers, P.A. andSmith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem.28: 350–356.

    Article  CAS  Google Scholar 

  • Galambos, J.T. 1967 The reaction of carbazole with carbohydrates. I. Effect of borate and sulfamate on the carbazole color of sugars. Anal. Chem.19: 119–132.

    CAS  Google Scholar 

  • Geitmann, A., Hudák, J., Vennigerholz, F. andWalles, B. 1995. Immunogold localization of pectin and callose in pollen grains and pollen tubes ofBrugmansia suaveolens—implications for the self-incompatibility reaction. J. Plant Physiol.147: 225–235.

    CAS  Google Scholar 

  • Hasegawa, Y., Nakamura, S. andNakamura, N. 1996. Immunocytochemical localization of callose in the germinated pollen ofCamellia japonica. Protoplasma194: 133–139.

    Article  CAS  Google Scholar 

  • Helsper, J.P.F.G., Veerkamp, J.H. andSassen, M.M.A. 1977. β-Glucan synthetase activity in Golgi vesicles ofPetunia hybrida. Planta133: 303–308.

    Article  CAS  Google Scholar 

  • Jauh, G.Y. andLord, E.M. 1996. Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta199: 251–261.

    Article  CAS  Google Scholar 

  • Knox, J.P., Linstead, P.J., King, J., Cooper, C. andRoberts, K. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta181: 512–521.

    Article  CAS  Google Scholar 

  • Knox, J.P., Linstead, P.J., Peart, J., Cooper, C. andRoberts, K. 1991. Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J.1: 317–326.

    Google Scholar 

  • Kroh, M. andKnulman, B. 1982. Ultrastructure of cell wall and plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta154: 241–250.

    Article  CAS  Google Scholar 

  • Lancelle, S.A., Cresti, M. andHepler, P.K. 1987. Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata. Protoplasma140: 141–150.

    Article  Google Scholar 

  • Lancelle, S.A. andHepler, P.K. 1992. Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma167: 215–230.

    Article  Google Scholar 

  • Larson, D.A. 1965. Fine-structural changes in the cytoplasm of germinating pollen. Amer. J. Bot.52: 139–154.

    Article  CAS  Google Scholar 

  • Li, Y.Q. andLinskens, M.F. 1983. Neutral sugar composition of pollen tube walls ofLilium longiflorum. Acta. Bot. Neerl.32: 437–445.

    CAS  Google Scholar 

  • Li, Y.Q., Faleri, C., Geitmann, A., Zhang, H.Q. andCresti M. 1995. Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes ofNicotiana tabacum L. Protoplasma189: 26–36.

    Article  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. andRandall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193: 265–275.

    PubMed  CAS  Google Scholar 

  • Miki-Hirosige, H. andNakamura, S. 1982. Process of metabolism during pollen tube wall formation. J. Electron Microsc.31: 51–62.

    Google Scholar 

  • Nakamura, N., Sado, M. andAral, Y., 1980a. Sucrose metabolism during the growth ofCamellia japonica pollen. Phytochem.19: 205–209.

    Article  CAS  Google Scholar 

  • Nakamura, N. andSuzuki, H. 1981. Sugar composition of pollen grain and pollen tube cell walls. Phytochem.20: 981–984.

    Article  CAS  Google Scholar 

  • Nakamura, N. andSuzuki, H. 1983. Cellulose and callose of the pollen tube wall ofCamellia japonica. Phytochem.22: 2517–2519,

    Article  CAS  Google Scholar 

  • Nakamura, N. andYoshida, K. 1980. A pectic substance extracted from the pollen tube wall ofCamellia japonica. Jpn. J. Palynol.25: 11–16 (in Japanese).

    Google Scholar 

  • Nakamura, N., Yoshida, K. andSuzuki, H. 1980b. Hemicellulose of the pollen tube wall ofCamellia japonica. Plant Cell Physiol21: 1383–1390.

    CAS  Google Scholar 

  • Noguchi, T. 1990. Consumption of lipid granules and formation of vacuoles in the pollen tube ofTradescantia reflexa. Protoplasma156: 19–28.

    Article  Google Scholar 

  • Rae, A.L., Harris, P.J., Bacic, A. andClarke, A.E. 1985. Composition of the cell walls ofNicotiana alata Link et Otto pollen tubes. Planta166: 128–133.

    Article  CAS  Google Scholar 

  • Ridge, R.W. 1995. Micro-vesicles, pyriform vesicles and macro-vesicles associated with the plasma membrane in the root hairs ofVicia hirsuta after freeze-substitution. J. Plant Res.108: 363–368.

    Article  Google Scholar 

  • Rosen, W.G., Gawilk, S.R., Dashek, W.V. andSiegesmund, K.A. 1964. Fine structure and cytochemistry ofLillium pollen tubes. Amer. J. Bot.51: 61–71.

    Article  CAS  Google Scholar 

  • Satoh, S., Iizuka, C., Kikuchi, A., Nakamura, N. andFujii, T. 1992. Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol.33: 841–847.

    CAS  Google Scholar 

  • Schlüpmann, H., Bacic, A. andRead, S.M. 1993. A novel callose synthase from pollen tubes ofNicotiana. Planta191: 470–481.

    Article  Google Scholar 

  • Schlüpmann, H., Bacic, A. andRead, S.M. 1994. Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes ofNicotiana alata Link et Otto. Plant Physiol.105: 659–670.

    PubMed  Google Scholar 

  • Seligman, A.M., Hanker, J.S., Wasserkrug, H., Dmochowski, H. andKatzoff, L. 1965. Histochemical demonstration of some oxidized macro-molecules with thiocarbohydrazide (TCH) or thiosemicarbazide (TSC) and osmium tetroxide. J. Histochem. Cytochem.13: 629–639.

    PubMed  CAS  Google Scholar 

  • Shloda, S., Shimizu, K. andNakai, Y. 1989. Serotonergic innervation of oxytocin neurons in the rat hypothalamus as revealed by double labeling immunoelectron microscopy. Biomedical Res.10: 117–125.

    Google Scholar 

  • Smallwood, M., Yates, E.A., Willats, W.G.T., Martin, H. andKnox, J.P. 1996. Immunochemical comparison of membrane-associated and secrete arabinogalactan-proteins in rice and carrot. Planta198: 452–459.

    Article  CAS  Google Scholar 

  • Steer, M.W. andSteer, J.M. 1989. Pollen tube tip growth. New Phytol.111: 323–358.

    Article  Google Scholar 

  • Tiwari, S.C. andPolito, V.S. 1988. Organization of the cytoskeleton in pollen tubes ofPyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma147: 100–112.

    Article  Google Scholar 

  • Van Aelst, A.C. andVan Went, J.L. 1992. Ultrastructural immuno-localization of pectins and glycoproteins inArabidopsis thaliana pollen grains. Protoplasma168: 14–19.

    Article  Google Scholar 

  • Van Der Woude, W.J., Morré, D.J. andBracker, C.E. 1971. Isolation and characterization of secretory vesicles in germinated pollen ofLilium longiflorum. J. Cell Sci.8: 331–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, Y., Nakamura, S., Kakizoe, S. et al. Immunocytochemical and chemical analyses of Golgi vesicles isolated from the germinated pollen ofCamellia japonica . J. Plant Res. 111, 421–429 (1998). https://doi.org/10.1007/BF02507807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507807

Key words

Navigation