Skip to main content
Log in

Localized pits and peaks in forbush decrease, associated with stratified structure of disturbed and undisturbed magnetic fields

  • Published:
Il Nuovo Cimento C

Summary

Forbush decrease (FD) is generally interpreted as a result of diffusion-convection of cosmic rays in a disturbed interplanetary magnetic field associated with the magnetohydrodynamic shock wave caused by solar flare. In this paper, we point out that a large number of FDs contain an isolated region or regions with pit-type time profile, in which cosmic rays are not in a diffusion-convection state but in a trapped state in undisturbed, uniform and strong magnetic field perpendicular to the solar wind. The trapped state is also characterized with a large ratio of the magnetic to ion thermal energy. The median duration time of the state is about 8 hours. About half of these states are associated with the northward (or southward) magnetic field, while the other half with the eastward (or westward) magnetic field. Flares responsible for the former state seem to be concentrated in an eastward region from about 30°W on the solar disk, while those for the latter state seem rather symmetric with respect to the centre of the solar disk. It is suggested that the trapped state is produced inside a magnetic tube of force which is not of a small scale such as that of the magnetic bubble pointed out by Klein and Burlaga, but of a large scale, having a horseshoe structure with its ends supposed to be connected to somewhere in an inner region near the Sun and with its cross-section supposed to be of a thin filament with radial and transverse dimensions of ≈0.1 a.u. and ≈1.1 a.u. at the Earth’s orbit. This belt-like tube of force is supposed to be produced on the solar surface or near the Sun and to be carried out by solar wind in a frozen state, trapping in itself low-density cosmic rays near the Sun. In addition to the pits, we point out also the existence of some peaks which are observed not only in the trapped region but also in a region of extremely disturbed magnetic field neighbouring in between two trapped regions. It is suggested that cosmic rays in the region of the latter type are supposed to be guided freely (or easily) from outer space through a path with similarly disturbed magnetic state, and therefore, they could maintain their density in the region always higher than in the neighbouring regions. Two kinds of cosmic-ray-guiding mechanism in the above can be regarded as being at opposite poles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PACS 96.40:

Cosmic rays

References

  1. J. A. Lockwood:Space Sci. Rev.,12, 658 (1971).

    Article  ADS  Google Scholar 

  2. E. Barouch andL. F. Burlaga:J. Geophys. Res.,80, 449 (1975).

    ADS  Google Scholar 

  3. J. A. Lockwood andW. R. Webber:J. Geophys. Res.,82, 1906 (1977).

    ADS  Google Scholar 

  4. T. Murayama, K. Maezawa andK. Hakamada:Time profiles of Forbush decreases and their relation to the structure of the interplanetary magnetic field, inProceedings of the 16th International Cosmic Ray Conference, Kyoto, Vol. 3 (1979), p. 416.

  5. G. N. Shah, C. L. Kaul, H. Razdan andS. R. Kaul:Causes of Forbush decreases, inProceedings of the 17th International Cosmic Ray Conference, Paris. Vol.4 (1981), p. 21.

  6. G. P. Lyubimov, N. V. Pereslegina, V. I. Tulupov andE. A. Chuchkov:Forbush-effect and the variations of interplanetary magnetic field and solar wind velocity, inProceedings of the 18th International Cosmic Ray Conference, Bangalore, Vol.3 (1983), p. 241.

  7. L. F. Burlaga:Understanding the heliosphere and its energetic particles, inProceedings of the 18th International Cosmic Ray Conference, Bangalore, Vol.12 (1983), p. 21.

  8. N. Iucci, M. Parisi, M. Storini, G. Villoresi andN. L. Zangrilli:Nuovo Cimento C,2, 411 (1979).

    ADS  Google Scholar 

  9. N. Iucci, M. Parisi, M. Storini andG. Villoresi:Nuovo Cimento C,7, 467 (1984).

    ADS  Google Scholar 

  10. N. Iucci, M. Parisi, C. Signorini, M. Storini andG. Villoresi:The flare origin of Forbush decreases not associated with solar flares on the visible hemisphere of the Sun, inProceedings of the 19th International Cosmic Ray Conference, La Jolla, Vol. 5 (1985), p. 230.

  11. N. Iucci, M. Parisi, M. Storini andG. Villoresi:Nuovo Cimento C,2, 1 (1979).

    ADS  Google Scholar 

  12. M. Wada, S. Mori, K. Nagashima, S. Sakakibara andS. Yasue:Forbush decrease of February 15, 1978-Analysis of data from various detectors including underground meson telescopes, inProceedings of the 16th International Cosmic Ray Conference Kyoto, Vol. 3 (1979), p. 390.

  13. M. Wada, S. Kawasaki, S. Sakakibara, H. Ueno, K. Nagashima, S. Mori, S. Yasue, M. Ichinose, H. Takahashi, T. Chiba, T. Kanno andY. Ishida:Forbush decrease on February 15, 1978, inSolar Terrestrial Environmental Research in Japan, Vol.3 (1979), p. 119.

  14. S. P. Agrawal andD. Venkatesan:J. Geophys. Res.,87, 9201 (1982).

    ADS  Google Scholar 

  15. a)J. H. King:Interplanetary Medium Data Book: Appendix, Rep. NSSDC/WDC-A-R & S 77-04A, NASA Goddard Space Flight Center (Greenbelt, Md., 1977);b)D. A. Couzens andJ. H. King:Interplanetary Medium Data Book: Suppl. A, Vol.3, 1977–1985, NSSDC/WDC-A 86-04, Natl. Space Sci. Data Center (Greenbelt, Md., 1986).

  16. S. Yoshida:Nuovo Cimento,4, 1410 (1956).

    Google Scholar 

  17. M. Wada andT. Suda:Average features of cosmic ray variation associated with sudden commencement of magnetic storm, inSci. Pap. Inst. Phys. Chem. Res. Jpn.,74, 1–12 (1980).

  18. K. Nagashima, S. P. Duggal andM. A. Pomerantz:Planet. Space Sci.,16, 29 (1968).

    Article  ADS  Google Scholar 

  19. S. P. Duggal andM. A. Pomerantz:J. Geophys. Res.,81, 5032 (1976).

    ADS  Google Scholar 

  20. E. N. Parker:Interplanetary Dynamical Processes (Interscience New York, 1963), 131.

    MATH  Google Scholar 

  21. A. Nishida:J. Geophys. Res.,87, 6003 (1982).

    ADS  Google Scholar 

  22. A. Kadokura andA. Nishida:J. Geophys. Res.,91, 13 (1986).

    ADS  Google Scholar 

  23. N. Iucci, M. Parisi, C. Signorini, M. Storini andG. Villoresi:Anomalous short-term increases in the galactic cosmic ray intensity: Are they related to interplanetary magnetic cloud-like structures?, inProceedings of the 19th International Cosmic Ray Conference, La Jolla, Vol.5 (1985), p. 226.

  24. L. W. Klein andL. F. Burlaga:J. Geophys. Res.,87, 613 (1982).

    Article  ADS  Google Scholar 

  25. R. S. Badruddin, R. S. Yadav andN. R. Yadav:Sol. Phys.,105, 413 (1986).

    Article  ADS  Google Scholar 

  26. L. R. Barnden:The large-scale magnetic field configuration associated with Forbush decreases, inProceedings of the 13th International Cosmic Ray Conference, Denver, Vol.2 (1973), p. 1277.

  27. Y. Kamiya:J. Geomagn. Geoelectr. Jpn.,13, 33 (1961).

    Google Scholar 

  28. S. Yoshida andS.-I. Akasofu:Planet. Space Sci.,13, 435 (1965).

    Article  ADS  Google Scholar 

  29. N. Iucci, S. Pinter, M. Parisi, M. Storini andG. Villoresi:Nuovo Cimento C,9, 39 (1986).

    ADS  Google Scholar 

  30. S. Pinter:Space Sci. Rev.,32, 145 (1982).

    Article  ADS  Google Scholar 

  31. M. W. Haurwitz, S. Yoshida andS.-I. Akasofu:J. Geophys. Res.,70, 2977 (1965).

    ADS  Google Scholar 

  32. L. R. Barnden:Forbush decreases 1966–1972; their solar and interplanetary associations and their anisotropies, inProceedings of the 13th International Cosmic Ray Conference, Denver, Vol.2 (1973), p. 1271.

  33. S.-I. Akasofu andS. Yoshida:Planet. Space Sci.,15, 39 (1967).

    Article  ADS  Google Scholar 

  34. T. Gold:Space Sci. Rev.,1, 100 (1962).

    Article  ADS  Google Scholar 

  35. Solar Geophysical Data No. 282, 169, NOAA, U.S. Department of Commerce (Boulder, Colo., 1968).

  36. A. Inoue, M. Wada andI. Kondo:Cosmic ray tables, No. 1,Asymptotic directions in 1975, inWDC-C2 for Cosmic Rays, Inst. of Physical and Chemical Res., Japan, 1983.

  37. K. Fujimoto, H. Kojima, K. Murakami andK. Nagashima:IMF sector boundary and cosmic ray intensity variations, inProceedings of the 17th International Cosmic Ray Conference, Paris, Vol.4 (1981), p. 72.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, K., Sakakibara, S., Fujimoto, K. et al. Localized pits and peaks in forbush decrease, associated with stratified structure of disturbed and undisturbed magnetic fields. Il Nuovo Cimento C 13, 551–587 (1990). https://doi.org/10.1007/BF02507622

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507622

Keywords

Navigation