Skip to main content
Log in

Influence of magnetic clouds on cosmic ray intensity variation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The data from a high counting rate neutron monitor has been analysed to study the nature of galactic cosmic-ray transient modulation associated with three classes of magnetic clouds, i.e., clouds associated with shock, stream interface and cold magnetic enhancement.

It is found that the decreases in cosmic-ray intensity which are associated with clouds preceded by a shock, are very high (Forbush-type) and these decreases start earlier than the arrival of the cloud at the Earth. From the study of the time profile of these decreases it is found that the onset time of a Forbush-type decrease produced by a shock-associated cloud starts nearly at the time of arrival of the shock front at the Earth and the recovery is almost complete within a week.

The decreases in cosmic-ray intensity associated with clouds followed by a stream interface are smaller in magnitude and larger in duration. The depression starts on the day of the arrival of the cloud.

The decreases associated with the third category of clouds, i.e., clouds associated with cold magnetic enhancement (a region in which plasma temperature is anomalously low and the magnetic field strength is enhanced) are of still smaller amplitude and duration. The decrease in this case starts on the day the cloud arrives at the Earth.

It seems that the Forbush decrease modulating region consists of a shock front followed by a plasma sheath in which the field intensity is high and turbulent. The amplitude of decrease is related to the field magnitude and the speed of the cloud. Both shocked plasma and the magnetic cloud are influential in determining the time profile of these decreases. In our view it is not the magnetic field strength or the topology alone which is responsible for the cosmic-ray depression. The most likely additional effect is the increased degree of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankiewicz, P. J., Stoker, P. H., and Moraal, H.: 1983, Proc. 18th Int. Cosmic Ray Conf. 10, 120.

    Google Scholar 

  • Barnden, L. R.: 1973, Proc. 13th Int. Cosmic Ray Conf. 2, 1277.

    Google Scholar 

  • Barouch, E. and Burlaga, L. F.: 1975, J. Geophys. Res. 80, 449.

    Google Scholar 

  • Barouch, E. and Sari, J. W.: 1976, J. Geophys. Res. 81, 1453.

    Google Scholar 

  • Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C.: 1982, J. Geophys. Res. 87, 4365.

    Google Scholar 

  • Burlaga, L. F.: 1983, Proc. 18th Int. Cosmic Ray Conf. 12, 21.

    Google Scholar 

  • Burlaga, L. F. and Behannon, K. W.: 1982, Solar Phys. 81, 181.

    Google Scholar 

  • Burlaga, L. F. and King, J. H.: 1979, J. Geophys. Res. 84, 6633.

    Google Scholar 

  • Burlaga, L. F. and Klein, L. W.: 1980, NASA Techn. Mem. 80668.

  • Burlaga, L. F., Klein, L. W., Sheeley, Jr., N. R., Michels, D. J., Howard, R. A., Kooman, M. J., Schwenn, R., and Rosenbaur, H.: 1982, Geophys. Res. Letters 9, 1317.

    Google Scholar 

  • Burlaga, L. F., McDonald, F. B., Ness, N. F., Schwenn, R., Lazarus, A. J., and Mariani, F.: 1984, J. Geophys. Res. 89, 6579.

    Google Scholar 

  • Burlaga, L. F. and Oglvie, K. W.: 1969, J. Geophys. Res. 74, 2815.

    Google Scholar 

  • Burlaga, L. F., Sittler, E., Mariani, F., and Schwenn, R.: 1981, J. Geophys. Res. 86, 6673.

    Google Scholar 

  • Duggal, S. P., Pomerantz, M. A., Schaefer, R. K., and Tsao, C. H.: 1983, J. Geophys. Res. 88, 2973.

    Google Scholar 

  • Forbush, S. E.: 1938, Phys. Rev. 54, 975.

    Google Scholar 

  • Fujimoto, K., Kojima, H., and Murakami, K.: 1983, Proc. 18th Int. Cosmic Ray Conf. 3, 267.

    Google Scholar 

  • Geranios, A.: 1982, Astrophys. Space Sci. 81, 103.

    Google Scholar 

  • Geranios, A. and Rosenbauer, H.: 1983, Proc. 18th Int. Cosmic Ray Conf. 4, 206.

    Google Scholar 

  • Gold, T.: 1959, J. Geophys. Res. 64, 1665.

    Google Scholar 

  • Goldstein, M. L., Burlaga, L. F., and Matthaeus, W. H.: 1984, J. Geophys. Res. 89, 3747.

    Google Scholar 

  • Hundhausen, A. J., Sawyer, C. B., House, L., Illings, R. M. E., and Wagner, W. J.: 1984, J. Geophys. Res. 89, 2639.

    Google Scholar 

  • Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979a, Nuovo Cimento 2C, 1.

    Google Scholar 

  • Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979b, Nuovo Cimento 2C, 421.

    Google Scholar 

  • Kane, R. P.: 1977, J. Geophys. Res. 82, 561.

    Google Scholar 

  • Klein, L. W. and Burlaga, L. F.: 1982, J. Geophys. Res. 87, 613.

    Google Scholar 

  • Laster, H., Lenchek, A. M., and Singer, S. F.: 1962, J. Geophys. Res. 67, 2639.

    Google Scholar 

  • Lockwood, J. A.: 1971, Space Sci. Rev. 12, 658.

    Google Scholar 

  • Lockwood, J. A., Hsieh, L. and Quenby, J. J.: 1975, J. Geophys. Res. 80, 1725.

    Google Scholar 

  • Lockwood, J. A. and Webber, W. R.: 1977, J. Geophys. Res. 82, 1906.

    Google Scholar 

  • Lockwood, J. A. and Webber, W. R.: 1984, J. Geophys. Res. 89, 17.

    Google Scholar 

  • McDonald, F. B., Trainor, J. H., and Webber, W. R.: 1981, Proc. 17th Int. Cosmic Ray Conf. 10, 147.

    Google Scholar 

  • Morfill, G., Richter, A. K., and Scholer, M.: 1979, J. Geophys. Res. 84, 1505.

    Google Scholar 

  • Morrison, P.: 1954, Phys. Rev. 95, 641.

    Google Scholar 

  • Morrison, P.: 1956, Phys. Rev. 101, 1354.

    Google Scholar 

  • Murayama, T., Maezawa, K., and Hakamada, K.: 1979, Proc. 16th Int. Cosmic Ray Conf. 3, 416.

    Google Scholar 

  • Newkirk, G. Jr., Hundhausen, A. J., and Pizzo, V.: 1981, J. Geophys. Res. 86, 5387.

    Google Scholar 

  • Nishida, A.: 1982, J. Geophys. Res. 87, 6003.

    Google Scholar 

  • Palmer, I. D., Allum, F. R., and Singer, S.: 1978, J. Geophys. Res. 83, 75.

    Google Scholar 

  • Parker, E. N.: 1963, in Interplanetary Dynamical Processes, Interscience, New York.

    Google Scholar 

  • Piddington, J. H.: 1958, Phys. Rev. 112, 589.

    Google Scholar 

  • Quenby, J. J.: 1971, Proc. 12th Int. Cosmic Ray Conf. 2, 730.

    Google Scholar 

  • Sanderson, T. R., Marsden, R. G., Reinhard, R., Wenzel, K. P., and Smith, E. J.: 1983, Geophys. Res. Letters 10, 916.

    Google Scholar 

  • Stoker, P. H. and Carmichael, H.: 1971, Astrophys. J. 169, 357.

    Google Scholar 

  • Thomas, B. T. and Gall, R.: 1984, J. Geophys. Res. 89, 2991.

    Google Scholar 

  • Van Allen, J. A.: 1979, Geophys. Res. Letters 6, 566.

    Google Scholar 

  • Venkatesan, D., Shukla, A. K., and Agrawal, S. P.: 1982, Solar Phys. 81, 375.

    Google Scholar 

  • Wagner, W. J.: 1984, Ann. Rev. Astron. Astrophys. 22, 267.

    Google Scholar 

  • Wilson, R. M. and Hildner, E.: 1984, Solar Phys. 91, 169.

    Google Scholar 

  • Zirker, J. B. (ed.): 1977, Coronal Holes and High Speed Streams; A monograph from Skylab Workshop I, Colorado Associated University Press, Boulder, Colo., U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badruddin, Yadav, R.S. & Yadav, N.R. Influence of magnetic clouds on cosmic ray intensity variation. Sol Phys 105, 413–428 (1986). https://doi.org/10.1007/BF00172057

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00172057

Keywords

Navigation