Skip to main content
Log in

GM-CSF mRNA and protein in human skin-derived lymph

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

GM-CSF together with IL-1β and TNF-α has been shown to play a key role in the maturation of LC in vitro. To investigate the presence of GM-CSF, IL-1β and TNF-α in human skin-derived lymph, we cannulated microsurgically a superficial lymph vessel on the lower leg of six healthy volunteers. Messenger RNA levels were estimated by a reverse transcriptase polymerase chain reaction (RT-PCR) method. From a total of 20 different samples, each consisting of 106 lymph cells, total RNA was extracted, reverse transcribed to cDNA and amplified using specific primers for the target gene. Amplified products were sized by electrophoresis and visualized by ethidium bromide. Specific transcripts for GM-CSF were detected in all lymph samples, indicating that circulating human skin-derived lymph cells express GM-CSF mRNA. A mean level of 11.5±2.1 pg/ml GM-CSF was detected in the lymph samples examined, as determined by a sensitive ELISA. In contrast to GM-CSF, occasional weak mRNA signals together with a mean level of 2.7±2.2 pg/ml were found for IL-1β, and neither specific transcripts nor protein were detected for TNF-α. Thus, our results demonstrate that afferent skin lymph cells constitutively express GM-CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DC :

dendritic cells

ELISA :

enzyme-linked immunosorbent assay

GM-CSF :

granulocyte/macrophage colony-stimulating factor

IL-1β:

interleukin-1β

LC :

Langerhans cells

LPS :

lipopolysaccharides

PBMC :

peripheral blood mononuclear cells

RT-PCR :

reverse transcriptase-polymerase chain reaction

TNF-α:

tumour necrosis factor α

References

  1. Gasson J (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145.

    PubMed  CAS  Google Scholar 

  2. Pimental E (1994) Handbook of growth factors, vol III. CRC Press, Boca Raton, pp 177–220

    Google Scholar 

  3. Rasko EJ, Gough NM (1994) Granulocyte-macrophage colonystimulating factor. In: Thomson A (ed) The cytokine handbook. 2nd edn. Academic Press, New York, pp 343–369

    Google Scholar 

  4. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM (1987) Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med 166:1484–1498

    Article  PubMed  CAS  Google Scholar 

  5. Inaba K, Schuler G, Steinman RM (1993) GM-CSF—a granulocyte/macrophage/dendritic cell stimulating factor. In: Furth R van (ed) Hemopoietic growth factors and mononuclear phagocytes Karger, Basel, pp 187–196

    Google Scholar 

  6. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526–546

    Article  PubMed  CAS  Google Scholar 

  7. Chang CH, Furue M, Tamaki K (1994) Selective regulation of ICAM-1 and major histocompatibility complex class I and II molecule expression on epidermal Langerhans cells by some of the cytokines released by keratinocytes and T cells. Eur J Immunol 24:2889–2895

    PubMed  CAS  Google Scholar 

  8. Larsen CP, Ritchie SC, Hendrix R, Linsley PS, Hathcock KS, Hodes RJ, Lowry RP, Rearson TC (1994) Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol 152:5208–5219

    PubMed  CAS  Google Scholar 

  9. Heufler C, Koch F, Schuler G (1988) Granulocyte/macrophage colony-stimulating factor and Interleukin-1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 167:700–705

    Article  PubMed  CAS  Google Scholar 

  10. Koch F, Heufler C, Kämpgen E, Schneeweiss D, Böck G, Schuler G (1990) TNF-α maintains viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med 171:159–171

    Article  PubMed  CAS  Google Scholar 

  11. Romani N, Lenz A, Glassel H, Stössel H, Stanzl U, Majdic O, Fritsch P, Schuler G (1989) Cultured human Langerhans cells resemble lymphoid DC in phenotype and function. J Invest Dermatol 93:600–609

    Article  PubMed  CAS  Google Scholar 

  12. Brand CU, Gerber H, Hunziker T, Schaffner T, Limat A, Braathen LR (1993) Phenotype of Langerhans cells in human afferent skin lymph derived from allergic contact dermatitis. Exp Dermatol 2:274–279

    Article  PubMed  CAS  Google Scholar 

  13. Brand CU, Hunziker T, Braathen LR (1992) Isolation of human skin derived lymph. Arch Dermatol Res 284:123–126

    Article  PubMed  CAS  Google Scholar 

  14. Chomczynsky P, Sachi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  15. Romani N, Heufler C, Koch F, Topar G, Kämpgen E, Schuler G (1994) Cytokines and Langerhans cells. In: Luger TA, Schwarz T (eds) Epidermal growth factors and cytokines. Marcel Dekker, New York Basel, pp 345–363

    Google Scholar 

  16. Inaba K, Metlay JP, Crowley MT, Witmer-Pack M, Steinman RM (1990) Dendritic cells as antigen presenting cells in vivo. Int Rev Immunol 6:197–206

    PubMed  CAS  Google Scholar 

  17. O’Doherty U, Steinmann RM, Peng M, Cameron PU, Gezelter S, Kopeloff I, Swiggard WJ, Pope M, Bhardwaj N (1993) Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med 178: 1067–1078

    Article  PubMed  CAS  Google Scholar 

  18. Teunissen MBM (1992) Dynamic nature and function of epidermal Langerhans cells in vivo and intro: a review, with emphasis on human Langerhans cells. Histochem J 24:697–716

    Article  PubMed  CAS  Google Scholar 

  19. Stingl G, Tamaki K, Katz SI (1980) Origin and function of epidermal Langerhans cells. Immunol Rev 53:149–174

    Article  PubMed  CAS  Google Scholar 

  20. Brand CU, Hunziker T, Schaffner T, Limat A, Gerber H, Braathen LR (1995) Activated immunocompetent cells in human skin lymph derived from irritant contact dermatitis: an immunomorphological study. Br J Dermatol 132:39–45

    Article  PubMed  CAS  Google Scholar 

  21. Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA, Berezowsky V (1976) Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol 25:137–151

    Article  PubMed  CAS  Google Scholar 

  22. Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana C (1990) Evidence that cutaneous antigen presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol 145:2833–2838

    PubMed  CAS  Google Scholar 

  23. Gerberick GF, Ryan CA, Fletcher ER, Howard AD, Robinson MK (1991) Increased number of dendritic cells in draining lymph nodes accompanies the generation of contact photosensitivity. J Invest Dermatol 96:355–361

    PubMed  CAS  Google Scholar 

  24. Inaba K, Schuler G, Witmer MD, Valinski J, Atassi B, Steinman RM (1986) Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J Exp Med 164:605–613

    Article  PubMed  CAS  Google Scholar 

  25. Inaba K, Steinmann RM (1986) Accessory cell-T lymphocyte interactions. Antigen-dependent and-independent clustering. J Exp Med 163:247–261

    Article  PubMed  CAS  Google Scholar 

  26. Inaba K, Romani N, Steinman RM (1989) An antigen-independent contact mechanism as an early step in T cell-proliferative responses to dendritic cells. J Exp Med 170:527–542

    Article  PubMed  CAS  Google Scholar 

  27. Romani N, Schuler G (1992) The immunologic properties of epidermal Langerhans cells as a part of the dendritic cell system. Springer Semin Immunopathol 13:265–279

    Article  PubMed  CAS  Google Scholar 

  28. Kasinrerk W, Baumruker T, Majdic O, Knapp W, Stockinger H (1993) CD 1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor. J Immunol 150:579–584

    PubMed  CAS  Google Scholar 

  29. Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172: 1483–1493

    Article  PubMed  CAS  Google Scholar 

  30. MacPherson GG, Fossum S, Harrison B (1989) Properties of lymph-borne (veiled) dendritic cells in culture. II. Expression of the IL-2 receptor: role of GM-CSF. Immunology 68:108–113

    PubMed  CAS  Google Scholar 

  31. Brand CU, Hunziker T, Limat A, Braathen LR (1993) Large increase of Langerhans cells in human skin lymph derived from irritant contact dermatitis. Br J Dermatol 128:184–188

    Article  PubMed  CAS  Google Scholar 

  32. Hunziker T, Brand CU, Kapp A, Wälti ER, Braathen LR (1992) Increased levels of inflammatory cytokines in human skin lymph derived from irritant contact dermatitis. Br J Dermatol 127:254–257

    Article  PubMed  CAS  Google Scholar 

  33. Koike K, Ogawa M, Ihle JN, Miyake T, Shimizu T, Miyajima A, Yokota T, Arai K (1987) Recombinant murine granulocytemacrophage colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: comparison with the effects of interleukin-3. J Cell Physiol 131:458–464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These investigations were supported by a grant from the Swiss National Fund (32-38813.93)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yawalkar, N., Brand, C.O. & Braathen, L.R. GM-CSF mRNA and protein in human skin-derived lymph. Arch Dermatol Res 288, 637–640 (1996). https://doi.org/10.1007/BF02505271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505271

Key words

Navigation