Skip to main content
Log in

Integrating encoding systems for recording ionizing radiation

3. Instrumental functions

  • Ionizing Radiation Measurements
  • Published:
Measurement Techniques Aims and scope

Abstract

The results are given of a numerical modeling of the instrumental functions of integrating encoding systems with multipinhole encoding collimators for recording ionization radiation. The characteristics of the instrumental functions are investigated using collimators with pseudorandom and self-supporting pinhole locations, making it possible to compare the tomographic properties of the collimators and to make an optimal choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Fedorov and S. A. Tereshchenko, Izmer. Tekh., No. 11, 49 (1995).

    Google Scholar 

  2. G. A. Fedorov and S. A. Tereshchenko, Izmer. Tekh., No. 9, 50 (1996).

    Google Scholar 

  3. G. A. Fedorov, Radiation Introscopy: Encoding of Information and Optimization of Experiment [in Russian], Énergoatomizdat, Moscow (1982).

    Google Scholar 

  4. L. T. Chang, B. Macdonald, and V. Perez-Mendez, Symposium on Optics in Medicine and Biology, Proc. SPIE Int. Soc. Opt. Eng.,89, 9 (1976).

    ADS  Google Scholar 

  5. E. E. Fenimore, T. M. Cannon, and E. L. Miller, Symposium on Applications of Digital Image Processing Optics, Proc. SPIE Int. Soc. Opt. Eng.,149, 232 (1978).

    Google Scholar 

  6. H. H. Barrett and F. A. Horrigan, Appl. Opt.,12, No. 11, 2686 (1973).

    Article  ADS  Google Scholar 

  7. G. A. Fedorov et al., Abstracts of Papers presented at the Third All-Union Scientific and Technical Conference on Problems of Technology in Medicine [in Russian], Tomsk (1980), p. 61.

  8. C. Brown, J. Appl. Phys.,45, No. 4, 1806 (1974).

    Article  ADS  Google Scholar 

  9. T. M. Cannon and E. E. Fenimore, Appl. Opt.,18, No. 7, 1052 (1979).

    ADS  Google Scholar 

  10. A. Wouters, K. M. Simon, and J. G. Hirschberg, Appl. Opt.,12, No. 8, 1871 (1973).

    ADS  Google Scholar 

  11. A. R. Gourlay, J. B. Stephen, and N. G. S. Young, Nucl. Instrum. Methods,221, 54 (1984).

    Article  Google Scholar 

  12. S. R. Gottesman and E. J. Schneid, IEEE Trans. Nucl. Sci.,NS-33, No. 1, 745 (1986).

    ADS  Google Scholar 

  13. G. A. Fedorov and S. A. Tereshchenko, Computational Emission Tomography [in Russian], Énergoatomizdat, Moscow (1990).

    Google Scholar 

  14. F. Hossfeld and R. Amadori, “On pseudorandom and Markov sequences optimizing correlation time-of-flight spectrometry,” Report No. Jül-684-FF, Kernforschungsanlage, Jülich, Germany (1970).

  15. T. M. Cannon and E. E. Fenimore, IEEE Trans. Nucl. Sci.NS-25, No. 1, 184 (1978).

    Article  ADS  Google Scholar 

  16. S. Bellini, M. Piacentini, C. Cafforio, and F. Rocca, IEEE Trans. Acoustics Speech and Signal Processing,ASSP-27, No. 3, 213 (1979).

    Article  MathSciNet  Google Scholar 

  17. O. Tretiak and C. Metz, SIAM J. Appl. Math.39, No. 2, 341 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  18. G. T. Gullberg and T. F. Budinger, IEEE Trans. Biochem. Eng.,BME-28, No. 2, 142 (1981).

    Google Scholar 

  19. É. Yu. Él'kind, Medits. Radiolog.,29, No. 10, 70 (1984).

    Google Scholar 

  20. A. G. Volkovich et al., At. Energ.,79, No. 5, 367 (1995).

    Google Scholar 

Download references

Authors

Additional information

Translated from Izmeritel'naya Tekhnika, No. 2, pp. 44–50, February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, G.A., Tereshchenko, S.A. Integrating encoding systems for recording ionizing radiation. Meas Tech 40, 164–174 (1997). https://doi.org/10.1007/BF02504042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02504042

Keywords

Navigation