Skip to main content
Log in

Thermodynamics and the mechanism of interaction of adenine with amino acids in water

  • Physical Chemistry
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Two groups of amino acids, which react differently with adenine, are distinguished. In the case of nonpolar and aliphatic amino acids, the endothermic effect of dehydration plays a decisive role, while in the case of aromatic, polar, and charged amino acids the exothermic effect of interaction with adenine is dominant. Associates of Ade with Lys. HCl, His, Trp, Asp, and Glu were found. It was demonstrated that the complex-forming ability of purines (Ade and Caf) is higher than that of pyrimidines. Based on the linear enthalpy-entropy compensation effect for complexes of amino acids with adenine, it was suggested that the hydration state of interacting molecules contributes significantly to interactions of Ade with amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zielenkiewicz, O. V. Kulikov, H. Piekarski, and W. Zielenkiewicz,Thermochimica Acta, 1995,256, 237.

    Article  CAS  Google Scholar 

  2. O. V. Kulikov, P. V. Lapshev, and E. V. Parfenyuk,Mendeleev Commun., 1995, No. 2, 72.

    Article  Google Scholar 

  3. P. V. Lapshev, O. V. Kulikov, and E. V. Parfenyuk,Biofiz. 1996,41, 1157, [Russ. J. Biophys., 1996,41 (Engl. Transl.)].

    CAS  Google Scholar 

  4. P. V. Lapshev and O. V. Kulikov,Izv. Akad. Nauk, Ser. Khim., 1997, 932 [Russ. Chem. Bull., 1997,46, 892 (Engl. Transl.)].

    Google Scholar 

  5. J. E. Desnoyers, G. Perron, L. Avedikian, and J. P. Moler,J. Solution Chem., 1976,5, 631.

    Article  CAS  Google Scholar 

  6. W. G. McMillan and J. E. Mayer,J. Chem. Phys., 1945,13, 276.

    Article  CAS  Google Scholar 

  7. F. Rodante,Thermochim. Acta, 1989,149, 157.

    Article  CAS  Google Scholar 

  8. T. Midori and T. Akiko,Acta Crystallogr., 1983,39, No. 4, 478.

    Google Scholar 

  9. G. Bunick,Acta Crystallorg., 1982,38, No. 2, 575.

    Article  Google Scholar 

  10. Molecular Interactions, Eds. H. Ratajczak and W. J. Orville-Thomas, Wiley, Chichester, 1981.

    Google Scholar 

  11. S. Miertus and M. Trebaticka,Collect. Czech. Chem. Commun., 1983,48, No. 12, 3517.

    CAS  Google Scholar 

  12. A. F. Danil de Namor, M. C. Ritt, M.-J. Schwing-Well, F. Arnaud-Neu, and D. F. V. Lewis,J. Chem. Soc., Faraday Trans., 1991,87, 3231.

    Article  CAS  Google Scholar 

  13. P. Gilli, V. Ferretti, G. Gilli, and P. A. Borea,J. Phys. Chem., 1994,98, No. 5, 1515.

    Article  CAS  Google Scholar 

  14. A. F. Danil de Namor, M. C. Ritt, D. F. V. Lewis, M.-J. Schwing-Weill, and F. A. Neu,Pure Appl. Chem., 1991,63, 1435.

    CAS  Google Scholar 

  15. E. Grunwald and C. Steel,J. Am. Chem. Soc., 1995,21, 5687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 289–291, February, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshev, P.V., Kulikov, O.V. Thermodynamics and the mechanism of interaction of adenine with amino acids in water. Russ Chem Bull 48, 288–290 (1999). https://doi.org/10.1007/BF02494550

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02494550

Key words

Navigation