Skip to main content
Log in

Interaction between Uracil and L-Histidine in an Aqueous Buffer Solution in the 288.15–313.15 K Range of Temperatures

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Densimetry and differential scanning calorimetry are used to study interactions between uracil (Ura) and the heterocyclic amino acid L-histidine (His) in an aqueous buffer solution (рН 7.4). Experimental values of the density and specific heat capacity of uracil in aqueous buffer solution and aqueous buffer solution with the amino acid are obtained in the 288.15–313.15 K range of temperatures. The concentration of Ura is varied from 0.004 to 0.032 mol kg−1 at a constant His concentration (0.0125 mol kg−1). The apparent molar parameters of uracil (φVUra, ϕCp) in aqueous buffer solution and the aqueous buffer solution containing the amino acid are determined. It is shown the interaction between His and Ura is accompanied by the formation of a molecular complex. It is found that the partial molar properties (\(^{\varphi }V_{{{\text{Ura}}}}^{^\circ }\), \(^{\phi }C_{p}^{^\circ }\)) of the transfer of uracil from the aqueous buffer solution to the aqueous buffer solution with the amino acid have positive values in the investigated range of temperatures. The results are discussed in the context of Gurney’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Wettergren, G. Carlsson, E. Odin, and B. Gustavsson, Cancer 6, 2935 (2012).

    Article  CAS  Google Scholar 

  2. S. Bakkialakshmi and D. Chandrakala, Spectrochim. Acta, Part A 88, 2 (2012).

    Article  CAS  Google Scholar 

  3. A. C. Cheng and A. D. Frankel, J. Am. Chem. Soc. 126, 434 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. S. Jones, D. T. A. Daley, N. M. Luscombe, et al., Nucl. Acids Rec. 29, 943 (2001).

    Article  CAS  Google Scholar 

  5. R. F. Ribeiro, A. V. Marenich, Ch. J. Cramer, and D. G. Truhlar, Phys. Chem. Chem. Phys. 13, 10908 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Yasuda, N. Tochio, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 43, 205 (1998).

    Article  CAS  Google Scholar 

  7. A. K. Nain, R. Pal, and R. K. Sharma, J. Mol. Liq. 165, 154 (2012).

    Article  CAS  Google Scholar 

  8. J. J. Jardine, T. G. Call, B. A. Patterson, et al., J. Chem. Thermodyn. 33, 1419 (2001).

    Article  CAS  Google Scholar 

  9. Riyazuddeen and T. Altamash, Thermochim. Acta 501, 72 (2010).

    Article  CAS  Google Scholar 

  10. T. S. Banipal, K. Singh, and P. K. Banipal, J. Solution Chem. 36, 1635 (2007).

    Article  CAS  Google Scholar 

  11. A. L. Hansena and L. E. Kaya, Proc. Natl. Acad. Sci. U. S. A., E1705 (2014). www.pnas.org/cgi/doi/10.1073/pnas.1400577111.

  12. Y. Oya-Ohta, T. Ochi, Y. Komoda, and K. Yamamoto, Mutat. Res. 326, 99 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. R. K. Chernova, O. V. Varygina, and N. S. Berezkina, Izv. Sarat. Univ., Nov. Ser., Ser. Khim. Biol. Ekol. 15 (4), 15 (2015).

    Google Scholar 

  14. K. C. Hunter, A. L. Millen, and S. D. Wetmore, J. Phys. Chem. B 111, 1858 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. B. Boeckx and G. Maes, J. Phys. Chem. B 116, 11890 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. T. S. Banipal, N. Kaur, and P. K. Banipal, J. Chem. Thermodyn. 95, 149 (2016).

    Article  CAS  Google Scholar 

  17. V. I. Smirnov and V. G. Badelin, J. Mol. Liq. 229, 198 (2017).

    Article  CAS  Google Scholar 

  18. P. Bell-Upp, A. C. Robinson, S. T. Whitten, et al., Biophys. Chem. 159, 217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Balodis, M. Madekufamba, L. N. Trevani, and P. R. Tremaine, Geochim. Cosmochim. Acta 93, 182 (2012).

    Article  CAS  Google Scholar 

  20. M. M. Khalil and A. E. Fazary, Monatsh. Chem. 135, 1455 (2004).

    Article  CAS  Google Scholar 

  21. E. Yu. Tyunina, V. G. Badelin, and I. N. Mezhevoi, J. Mol. Liq. 278, 505 (2019). https://doi.org/10.1016/j.molliq.2019.01.092

    Article  CAS  Google Scholar 

  22. R. Bhat and J. C. Ahluwalia, J. Phys. Chem. 89, 1099 (1985).

    Article  CAS  Google Scholar 

  23. I. V. Terekhova, R. de Lisi, G. Lazzara, et al., J. Therm. Anal. Calorim. 92, 285 (2008).

    Article  CAS  Google Scholar 

  24. E. Yu. Tyunina, V. G. Badelin, and I. N. Mezhevoi, J. Solution Chem. 46, 249 (2017).

    Article  CAS  Google Scholar 

  25. E. C. W. Clarke and D. N. Glew, J. Phys. Chem. Ref. Data 14, 490 (1985).

    Article  Google Scholar 

  26. Y. Miao, T. A. Cross, and R. Fu, J. Magn. Reson. 245, 105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Bretti, R. M. Cigala, O. Giuffrè, et al., Fluid Phase Equilib. 459, 51 (2018).

    Article  CAS  Google Scholar 

  28. E. Yu. Tyunina, V. G. Badelin, and A. A. Kuritsyna, Russ. J. Phys. Chem. A 94, 731 (2020). https://doi.org/10.1134/S0036024420040226

    Article  CAS  Google Scholar 

  29. J. R. DeMember and F. A. Wallace, J. Am. Chem. Soc. 97, 6240 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. V. G. Badeline, E. Yu. Tyunina, I. N. Mezhevoi, and G. N. Tarasova, Russ. J. Phys. Chem. A 89, 2229 (2015).

    Article  CAS  Google Scholar 

  31. W. Zielenkiewicz, O. Pietraszkiewicz, M. Wszelaka-Rylic, et al., J. Solution Chem. 27, 121 (1998).

    Article  CAS  Google Scholar 

  32. I. V. Terekhova and O. V. Kulikov, Mendeleev Commun. 3, 1 (2002).

    Google Scholar 

  33. L. Lepori and P. Gianni, J. Solution Chem. 29, 405 (2000).

    Article  CAS  Google Scholar 

  34. F. Shahidi and P. G. Farrell, J. Chem. Soc., Faraday Trans. 77, 963 (1981).

    Article  CAS  Google Scholar 

  35. F. Franks, Water: A Comprehensive Treatise (Plenum, New York, 1973), Vol. 3.

    Google Scholar 

  36. R. W. Gurney, Ionic Processes in Solution (McGraw-Hill, New York, 1953).

    Google Scholar 

  37. T. S. Banipal, N. Kaur, and P. K. Banipal, J. Chem. Thermodyn. 82, 12 (2015). https://doi.org/10.1016/j.jct.2014.10.015

    Article  CAS  Google Scholar 

  38. M. M. H. Bhuiyan, A. W. Hakin, and J. L. Liu, J. Solution Chem. 39, 877 (2010).

    Article  CAS  Google Scholar 

  39. E. Yu. Tyunina, V. G. Badelin, and I. N. Mezhevoi, J. Mol. Liq. 278, 505 (2019). https://doi.org/10.1016/j.molliq.2019.01.092

    Article  CAS  Google Scholar 

  40. L. G. Hepler, Can. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  41. S. Hadži and J. Lah, Biochim. Biophys. Acta, Gen. Subj. 1865, 129774 (2021).

    Article  CAS  Google Scholar 

  42. N. Kishore and J. C. Ahluwalia, J. Solution Chem. 19, 51 (1990).

    Article  CAS  Google Scholar 

  43. W. Zielenkiewicz, A. Zielenkiewicz, J.-P. E. Grolier, et al., J. Solution Chem. 21, 1 (1992).

    Article  CAS  Google Scholar 

  44. V. P. Vasil’ev, Thermodynamic Properties of Solutions of Electrolytes (Vyssh. Shkola, Moscow, 1982) [in Russian].

    Google Scholar 

  45. V. A. Lat`isheva, Russ. Chem. Rev. 42, 1757 (1973).

    Google Scholar 

  46. B. Madan and K. A. Sharp, J. Phys. Chem. B 105, 2256 (2001).

    Article  CAS  Google Scholar 

  47. P. K. Banipal, T. S. Banipal, J. C. Ahluwalia, and B. S. Lark, J. Chem. Thermodyn. 34, 1825 (2002).

    Article  CAS  Google Scholar 

  48. B. S. Lark, P. Patyar, T. S. Banipal, and N. Kishore, J. Chem. Eng. Data 49, 553 (2004).

    Article  CAS  Google Scholar 

  49. J. Szeminska, W. Zielenkiewicz, and K. L. Wierzchowski, Biophys. Chem. 10, 409 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Our density and specific heat capacity measurements were made on equipment at the Krestov Institute of Solution Chemistry’s Upper Volga Regional Center of Physicochemical Research shared resource center (http://www.isc-ras.ru/ru/struktura/ckp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Tyunina.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyunina, E.Y. Interaction between Uracil and L-Histidine in an Aqueous Buffer Solution in the 288.15–313.15 K Range of Temperatures. Russ. J. Phys. Chem. 95, 2254–2262 (2021). https://doi.org/10.1134/S0036024421110248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421110248

Keywords:

Navigation