Skip to main content
Log in

Using principal component analysis for the study of the retention behaviour of phenol derivatives under reversed-phase conditions

  • Originals
  • Column Liquid Chromatography
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The retention time of 11 ring-substituted phenol derivatives was measured on six different reversed-phase HPLC columns and the log k, theoretical plate number (N) and asymmetry factor (F) values were calculated for each solutes on each column. The similarities and dissimilarities among the columns and solutes were elucidated by principal component analysis followed with nonlinear mapping technique and cluster analysis. Calculations indicated that the retention characteristics of porous graphitized carbon stationary phase considerably deviate from those of octadecyl- and hexyl-coated silica, octadecyl-coated polystyrene-divinylbenzene polymer and polybutadiene-coated alumina. The differences among these columns were markedly smaller. The retention behaviour of aminophenols differed from those of other phenol derivatives proving the importance of molecular polarity in the retention. It was established that the mode of calculation slightly modifies the similarity and dissimilarity among the columns and solutes, therefore, the use of more than one calculation method is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hankey, R.A.; Addy, V.L.; Senior, K.; Langridge, D.A.; Bowden, W.; Scholz, W.J. Amer. Leather. Chem. Assoc. 2001,96, 205–213.

    CAS  Google Scholar 

  2. Gonzalez, G.; Herrera, G.; Garcia, M.T.; Pena, M.Biores. Technol. 2001,80, 137–142.

    Article  CAS  Google Scholar 

  3. Mishra, S.; Singh, V.; Jain, A.; Verma, K.K.Analyst (Cambridge) 2001,126, 1663–1668.

    CAS  Google Scholar 

  4. Bastos, A.E.R.; Cassidy, M.B.; Trevors, J.T.; Lee, H.; Rossi, A.Appl. Microbiol. Biotechnol. 2001,56, 255–260.

    Article  CAS  Google Scholar 

  5. Powley, M.W.; Carlson, G.P.Toxicol. Lett. 2001,125, 117–123.

    Article  CAS  Google Scholar 

  6. Pedersen, G.; Brynskov, J.; Saermark, T.Scand. Gastroenter. 2002,37, 74–79.

    Article  CAS  Google Scholar 

  7. Van Den Heuvel R.L.; Leppens, H.; Schoeters, G.E.R.Cell. Biol. Toxicol. 2001,17, 107–116.

    Article  Google Scholar 

  8. Pessione, E.; Giuffrida, M.G.; Mazzoli, R.; Caposio, P.; Landolfo, S.; Conti, A.; Giunta, C.; Gribaudo, G.Biol. Chem. 2001,382, 1253–1261.

    Article  CAS  Google Scholar 

  9. Helaleh, M.I.H.; Tanaka, K.; Fujii, S-I.; Korenaga, T.Anal. Sci. 2001,17, 1225–1227.

    Article  CAS  Google Scholar 

  10. Sokolowksa-Wozniak, A.; Nowak, R.Herba Pol. 2000,46, 255–260.

    Google Scholar 

  11. Alons-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.A.; Gallo, B.; Vicente, F.J. Chromatogr. A 2001,933, 37–43.

    Article  Google Scholar 

  12. Takeda, S.; Tanaka, Y.; Yamane, M.; Siroma, Z.; Wakida, S.; Otsuka, K.; Terabe, S.J. Chromatogr. A 2001,924, 415–420.

    Article  CAS  Google Scholar 

  13. Mardia, K.V.; Kent, J.T.; Bibby, J.M.Multivariate Analysis. Academic Press, London,1979, pp. 213–254.

    Google Scholar 

  14. Drew, M.G.B.; Wilden, G.R.H.; Spillane, W.J.; Walsh, R.M.; Ryder, C.A.; Simmie, J.M.J. Agr. Food Chem. 1998,46, 3016–3026.

    Article  CAS  Google Scholar 

  15. Seybold, P.G.SAR QSAR Environ. Res. 1999,10, 101–115.

    CAS  Google Scholar 

  16. Sarbu, C.; Todor, S.J. Planar Chromatogr. Mod. TLC 1998,11, 123–126.

    CAS  Google Scholar 

  17. Mannhold, R.; Cruciani, G.; Dross, K.; Rekker, R.J. Comp. Aid. Molec. Des. 1998,12, 573–581.

    Article  CAS  Google Scholar 

  18. Héberger, K.; Lopata, A.J. Org. Chem. 1998,63, 8646–8653.

    Article  Google Scholar 

  19. Héberger, K.; Görgényi, M.J. Chromatogr. A 1999,845, 21–31.

    Article  Google Scholar 

  20. Damborsky, J.; Berglund, A.; Kuty, M.; Ansorgová, A.; Nagata, A.; Sjöström, M.Quant. Struc.-Act. Relat. 1998,17, 450–458.

    Article  CAS  Google Scholar 

  21. Zaliani, A.; Gancia, E.J. Chem. Inf. Comput. Sci. 1999,39, 525–533.

    Article  CAS  Google Scholar 

  22. Katritzky, A.R.; Tamm, T.; Wang, Y.; Karelson, M.J. Chem. Inf. Comput. Sci. 1999,39, 692–698.

    Article  CAS  Google Scholar 

  23. Héberger, K.Chemon. Int. Lab. Syst. 1999,47, 41–49.

    Article  Google Scholar 

  24. Dillon, W.R.Multivariate Analysis. John Wiley and Sons, New York,1984, pp. 213–254.

    Google Scholar 

  25. Sammon, J.W. Jr.IEEE Trans. Comput. 1969,C18, 401–407.

    Google Scholar 

  26. Forgács, E. Kósa, A.; Csiktusnádi Kiss, G.; Kaliszan, R.; Haber, P.; Nasal, A.J. Liq. Chrom. & Rel. Technol. 1998,21, 2523–2534.

    Google Scholar 

  27. Iványi, T.; Vander Heyden, Y.; Visky, D.; Baten, P.; De Beer, J.; Lázár, I.; Massart, D.L.; Roets, E.; Hoogmartens, J.J. Chromatogr. A 2002,954, 99–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kánya, Z., Cserháti, T. & Forgács, E. Using principal component analysis for the study of the retention behaviour of phenol derivatives under reversed-phase conditions. Chromatographia 57, 451–456 (2003). https://doi.org/10.1007/BF02492540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02492540

Key Words

Navigation