Skip to main content
Log in

Effects of anti-microtubule drugs onin vitro polymerization of tubulin from mung bean

  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

Effects of anti-microbule drugs on tubulin polymerizationin vitro were investigated using purified mung bean (Vigna radiata) tubuli. Colchicine induced the formation of macrotubules at the relatively low concentration of 10 μM. and the appearance of corkscrew-like filaments from the ends of the macrotubules at concentrations of more than 100 μM. Vinblastine substantially inhibited polymerization at 1 μM and caused the formation of paracrystals at concentrations greater than 10 μM. Oryzalin inhibited polymerization at 1 μM partially and at 10 μM completely. Paracrystal formation was also induced by cremart at 10 μM, but these paracrystals appeared to be more rigid than those induced by vinblastine. Amiprophos methyl (APM), with a chemical configuration similar to cremart, substantially inhibited polymerization at 1 μM, but the formation of paracrystals was weak. Griseofulvin at 10 μMalso inhibited the polymerization of tubulin while at higher concentrations aggregates of helices were formed. Inhibition of polymerization by phenylcarbamate herbicides was more effective than that caused by benzimidazoylcarbamate fungicides. The effects of drugs onin vitro preformed (MTs) were also investigated. Colchicine and vinblastine showed identical effects to those on the polymerization process. Griseofulvin, cremart and APM induced only macrotubule formation while the other drugs tested had no major effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bensch, K.G. andS.E. Malawista. 1968. Microtubule crystals: A new biophysical phenomenon induced by Vinca alkaloids. Nature218: 1176–1177.

    Article  PubMed  CAS  Google Scholar 

  • Bergen, L.G. andG.G. Borisy. 1983. Tubulin-colchicine complex inhibits microtubule elongation at both plus and minus ends. J. Biol. Chem.258: 4190–4194.

    PubMed  CAS  Google Scholar 

  • Brown, D.L. andG.B. Bouck. 1974. Microtubule biogenesis and cell shape inOchromonas. III. Effects of the herbicidal mitotic inhibitor isopropyl N-phenylcarbamate on shape and flagellum regeneration. J. Cell. Biol.61: 514–536.

    Article  PubMed  CAS  Google Scholar 

  • Collis, P.S. andD.P. Weeks. 1978. Selective inhibition of tubulin synthesis by amiprophos methyl during flagellar regeneration inChlamydomonas reinhardi. Science202: 440–442.

    PubMed  CAS  Google Scholar 

  • Coss, R.A., R.A. Bloodgood, D.L. Brower, J.D. Pickett-Heaps andJ.R. McIntosh. 1975. Studies on the mechanism of action of isopropyl N-phenylcarbamate. Exp. Cell Res.92: 394–398.

    Article  PubMed  CAS  Google Scholar 

  • — andJ.D. Pickett-Heaps. 1974. The effects of isopropyl N-phenylcarbamate on the green alga Oedogonium cardiacum. I. Cell division. J. Cell Biol.63: 84–98.

    Article  PubMed  CAS  Google Scholar 

  • Dustin, P. 1984. Microtubules. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Falconer, M.M. andR.W. Seagull. 1987. Amiprophos-methyl (APM): A rapid, reversible, anti-microtubule agent for plant cell cultures. Protoplasma136: 118–124.

    Article  CAS  Google Scholar 

  • Gunning, B.E.S. andA.R. Hardham. 1982. Microtubules. Annu. Rev. Plant Physiol.33: 651–698.

    Article  CAS  Google Scholar 

  • Haber, J.E., J.G. Peloquin, H.O. Halvorson andG.G. Borisy. 1972. Colcemid inhibition of cell growth and the characterization of a colcemid-binding activity inSaccharomyces cerevisiae. J. Cell Biol.55: 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Hardham, A.R. andB.E.S. Gunning. 1980. Some effects of colchicine on microtubules and cell division in roots ofAzolla pinnata. Protoplasma102: 31–51.

    Article  CAS  Google Scholar 

  • Hart, J.W. andD.D. Sabnis. 1976. Colchicine binding activity in extracts of higher plants. J. Exp. Bot.27: 1353–1360.

    CAS  Google Scholar 

  • Hepler, P.K. andW.T. Jackson. 1969. Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells ofHaemanthus katherinae Baker. J. Cell Sci.5: 727–743.

    PubMed  CAS  Google Scholar 

  • Hertel, C., H. Quader, D.G. Robinson andD. Marme. 1980. Anti-microtubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149: 336–340.

    Article  CAS  Google Scholar 

  • Keith, B. andL.M. Srivastava. 1978. Effects of colchicine and lumicolchicine on hypocotyl elongation, respiration rates and microtubules in gibberellic acid treated lettuce seedling. Planta139: 301–303.

    Article  CAS  Google Scholar 

  • Kiermayer, O. andC. Fedtke. 1977. Strong anti-microtubule action of amiprophos methyl (APM) inMicrasteras. Protoplasma92: 163–166

    Article  CAS  Google Scholar 

  • Kitanishi, T., H. Shibaoka andY. Fukui. 1984. Disruption of microtubules and retardation of development ofDictyostelium with ethyl N-phenylcarbamate and thiabendazole. Protoplasma120: 185–196.

    Article  CAS  Google Scholar 

  • Koop, H-U. andO. Kiermayer. 1980. Protoplasmic streaming in the giant unicellular green algaAcetabularia mediterranea acting on microfilaments and microtubules. Protoplasma102: 295–306.

    Article  Google Scholar 

  • Lloyd, C.W. 1982. The Cytoskeleton in Plant Growth and Development. Academic Press, London.

    Google Scholar 

  • Luduena, R.F., T. Pfeffer andD. Myles. 1976. Comparison of tubulin from phylogenetically distant sources. J. Cell Biol.70: 129a.

    Google Scholar 

  • — andM.C. Roach. 1981. Interaction of tubulin with drugs and alkylating agents. 2. Effects of colchicine, podophyllotoxin, and vinblastine on the alkylation of tubulin. Biochemistry20: 4444–4450.

    Article  PubMed  CAS  Google Scholar 

  • Malawista, S.E. andH. Sato. 1969. Vinblastine produces uniaxial, birefringent crystals in starfish oocytes. J. Cell Biol.42: 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R.L., C.T. Rauch andL. Wilson. 1980. Mechanism of colchicine-dimer addition to microtubule ends: implications for the microtubule polymerization mechanism. Biochemistry19: 5550–5557.

    Article  PubMed  CAS  Google Scholar 

  • — andL. Wilson. 1977. Addition of colchicine-tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc. Natl. Acad. Sci. USA74: 3466–3470.

    Article  PubMed  CAS  Google Scholar 

  • Meindl, U. 1983. Cytoskeletal control of nuclear migration and anchoring in developing cells of Micrasterias denticulata and the change caused by the anti-microtubular herbicide amiprophos-methyl (AMP). Protoplasma118: 75–90.

    Article  CAS  Google Scholar 

  • Mita, T. andH. Shibaoka. 1984. Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma119: 100–109.

    Article  Google Scholar 

  • Mizuno, K. 1985.In vitro assembly of microtubules from tubulin of several higher plants. Cell Biol. Int. Rep.9: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • —,M. Koyama andH. Shibaoka. 1981. Isolation of plant tubulins from azuki bean epicotyls by ethyl N-phenylcarbamate-Sepharose affinity chromatography. J. Biochem.89: 329–332.

    PubMed  CAS  Google Scholar 

  • —,J. Perkin, F. Sek andB. Gunning. 1985. Some biochemical properties of higher plant tubulins. Cell Biol. Int. Rep.9: 5–12.

    Article  PubMed  CAS  Google Scholar 

  • —,F. Sek, J. Perkin, S. Wick, J. Duniec andB. Gunning. 1985. Monoclonal antibodies specific to plant tubulin. Protoplasma129: 100–108.

    Article  CAS  Google Scholar 

  • Morejohn, L.C. andD.E. Fosket. 1984. Taxol-induced rose microtubule polymerizationin vitro and its inhibition by colchicine. J. Cell Biol.99: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • ——and—. 1984. Inhibition of plant microtubule polymerizationin vitro by the phosphoric amide herbicide amiprophos-methyl. Science224: 874–876.

    CAS  Google Scholar 

  • —,T.E. Bureau, J. Mole-Bajer, A.S. Bajer andD.E. Fosket. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerizationin vitro. Planta172: 252–264.

    Article  CAS  Google Scholar 

  • ——,—,L.P. Tocchi andD.E. Fosket. 1987. Resistance ofRosa microtubule polymerization to colchicine results from a low affinity interaction of colchine and tubulin. Planta170: 230–241.

    Article  CAS  Google Scholar 

  • Okamura, S. 1983. Effect of tartrate on the colchicine-binding activity in cultured carrot cell extract. Protoplasma118: 199–205.

    Article  CAS  Google Scholar 

  • —,T. Kato andA. Nishi. 1984. Lack of inhibition of carrot colchicine binding activity by podophyllotoxin. FEBS Lett.168: 278–280.

    Article  CAS  Google Scholar 

  • Oliver, J.M., J.A. Krawiec andR.D. Berlin. 1978. A carbamate herbicide causes microtubule and microfilament disruption and nuclear fragmentation in fibroblasts. Exp. Cell Res.116: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J.D. 1975. Green algae. Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, p. 472.

    Google Scholar 

  • Quinlan, R.A., A. Roobol, C.I. Pogson andK. Gull. 1981. A correlation between in vivo effects of the microtubule inhibitors colchicine, parbendazole and nocodazole on myxamoebae ofPhysarum polycephalum. J. Gen. Microbiol.122: 1–6.

    PubMed  CAS  Google Scholar 

  • Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D.G. andW. Herzog. 1977. Structure, synthesis and orientation of microfibrils. III. A survey of the action of microtubule inhibitors on microtubules and microfibril orientation inOocystis solitaria. Cytobiologie15: 463–474.

    CAS  Google Scholar 

  • Roobol, A. andK. Gull. 1980. Microtubules and microtubule proteins ofPhysarum polycephalum In M. De Brabander and J. De May, ed., Microtubules and Microtubule Inhibitors, pp. 523–533. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Schnepf, E., G. Deichgraber andN. Ljubesic. 1976. The effects of colchicine, ethionine, and deuterium oxide on microtubules in youngSphagnum leaflets. A quantitative study. Cytobiologie13: 341–353.

    CAS  Google Scholar 

  • Shibaoka, H. andT. Hogetsu. 1977. Effects of ethyl N-phenyl-carbamate on wall microtubules and on gibberellin- and kinetin-controlled cell expansion. Bot. Mag. Tokyo90: 317–321.

    Article  CAS  Google Scholar 

  • Spurr, A.R. andW.M. Harris. 1968. Ultrastructure of chloro-plasts and chromoplasts inCapsium annuum I. Thylakoid membrane changes during fruit ripening. Amer. J. Bot.55: 1210–1224.

    Article  Google Scholar 

  • Stearns, M.E. andD.L. Brown. 1981. Microtubule organizing centers (MTOCs) of the algaPolytomella exert spatial control over microtubule initiationin vivo andin vitro. J. Ultrastruct. Res.77: 366–378.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuno, K., Suzaki, T. Effects of anti-microtubule drugs onin vitro polymerization of tubulin from mung bean. Bot Mag Tokyo 103, 435–448 (1990). https://doi.org/10.1007/BF02491262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02491262

Key words

Navigation