Skip to main content
Log in

The nuclei of cellular organelles and the formation of daughter organelles by the “plastid-dividing ring”

  • Invited Article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

It has been established that organelles, such as mitochondria and plastids, contain organelle-specific DNA and arise from the division of pre-existing organelles (e.g., Possingham and Lawrence, 1983). We propose that organelle DNAs, such as mitochondrial DNA and plastid DNA are not naked in organellesin situ but are organized in each case to form an “organelle nucleus” with basic proteins (Kuroiwa, 1982). The concept of organelle nuclei has changed our ideas about the division of organelles. Thus, the process of organelle division must be composed of two main events: division of the organelle nucleus and organellekinesis (division of the other components of the mitochondrion or plastid). The latter term has been adopted as an appropriate analogue of cytokinesis.

We were the first to identify the plastid-dividing ring (PD-ring), which is located in the cytoplasm close to the outer envelope membrane at the constricted isthmus of dividing chloroplasts in the red algaCyanidium caldirum. The PD-ring is about 60 nm in width and 25 nm in thickness, and is a circular bundle of actin-like, fine filaments, each about 4–5 nm in diameter. Since cytochalasin B, an inhibitor of polymerization of actin filaments, inhibits the formation of the PD-ring and, thus, prevents subsequent division of chloroplasts, the PD-ring is thought to be a structure that is essential for the division of plastids (plastidkinesis).

The behavior of the PD-ring during a cycle of chloroplast division can be classified into the following four stages on the basis of morphological and temporal differences. The chloroplast growth stage: the small, spherical chloroplast increases in volume and becomes a football-like structure, while the PD-ring from the previous division disappears. Formation of the PD-ring: the somewhat electron-dense body (see below) is fragmented into many, somewhat electron-dense granules, which are aligned along the equatorial region of the chloroplast and fine filaments are formed from the somewhat electron-dense granules in the equatorial region. The fine filaments of the PD-ring align themselves according to the longest axis of their overall domain, i.e., circumferentially. Contraction stage: a bundle of fine filaments begins to contract and generates a deep furrow. Conversion stage: after chloroplast division, the remnants of the PD-ring are converted into somewhat electron-dense bodies. Similar events occur during the second cycle of chloroplast division. Since similar structures are observed extensively in the plastids of algae, moss and higher plants, the PD-ring appears to be an essential structure for the division of plastids in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PD-ring:

plastid-dividing ring

DAPI:

4′-6-diamidino-2-phenylindole

pt-nucleus:

plastid nucleus

pt-DNA:

plastid DNA

cp-DNA:

chloroplast DNA

cp-nucleus:

chloroplast nucleus

mt-DNA:

mitochondrial DNA

mt-nucleus:

mitochondrial nucleus

ISC:

initiation of synchronous culture

SEG:

somewhat-electron dense granule

SEB:

somewhat-electron dense body

References

  • Anderson, S., A.T. Bankier, B.G. Barrell, M.H.L. de Bruijin, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden andI.G. Young. 1981. Sequence and organization of the human mitochondrial genome. 16,569-base pair human mitochondrial genome. Nature290: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Briat, J.F., J.P. Laulhere andR. Mache. 1979. Transcription activity of a DNA-protein complex isolated from spinach plastids. Eur. J. Biochem.98: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • —,C. Gigot, J.P. Laulhere andR. Mache. 1982. Visualization of a spinach plastid transcriptionally active DNA protein complex in a highly condensed structure. Plant Physiol.59: 1205–1211.

    Google Scholar 

  • —,S. Letoffe, R. Mache andJ.R. Yaniv. 1984. Similarity between the bacterial histone-like protein HU and a protein from spinach chloroplasts. FEBS lett.172: 75–79.

    Article  CAS  Google Scholar 

  • Chaly, N. andJ.V. Possingham. 1981. Structure of constricted proplastids in meristematic tissues. Biol. Cell41: 203–210.

    Google Scholar 

  • Chiba, Y. 1951. Cytological studies on chloroplasts. I. Cytologic demonostration of nucleic acids in chloroplasts. Cytologia16: 259–264.

    CAS  Google Scholar 

  • Coleman, A.W. 1985. Diversity of plastid DNA configuration among classes of eukaryote algae. J. Phycol.21: 1–16.

    Article  Google Scholar 

  • Cosgrove, W. andM. Skeen. 1970. The cell cycle inCrithidia fasciculata. Temporal relationships between synthesis of deoxyribonucleic acid in the nucleus and in the kinetoplast. J. Protozool.17: 172–177.

    PubMed  CAS  Google Scholar 

  • Darnell, J.E., H.F. Lodish andD. Baltimore. 1986. The cytoskeleton and cellular movements: actin-myosin. In: Molecular Cell Biology. Freeman and Co. New York.

    Google Scholar 

  • De Duve, C. andP. Baudhuin. 1966. Peroxisomes (microbodies and related particles). Physiol. Rev.46: 323–352.

    PubMed  Google Scholar 

  • Green, P.B. 1964. Cinematic observations on the growth and division of chloroplasts inNitella. Amer. J. Bot.51: 334–342.

    Article  Google Scholar 

  • Greenspan, H.P. 1977. On the dynamics of cell cleavage. J. Theo. Biol.65: 79–99.

    Article  CAS  Google Scholar 

  • Hallick, R.B., C. Lpper, O.C. Richards andW.J. Rutter. 1976. Isolation of a transcriptionally active chromosome from chloroplasts ofEuglena gracilis. Biochemistry15: 3039–3045.

    Article  PubMed  CAS  Google Scholar 

  • Hansmann, P., H. Falk, K. Ronal andP. Sitte. 1985. Structure, composition, and distribution of plastid nucleoids inNarcissus pseudonaricissus. Planta164: 459–472.

    Article  CAS  Google Scholar 

  • Hashimoto, H. 1985. Changes in distribution of nucleoids in developing and dividing chloroplasts and etioplast ofAvena sativa. Protoplasma127: 119–127.

    Article  Google Scholar 

  • — 1986. Double-ring structure around the constricting neck of dividing plastids ofAvena sativa. Protoplasma135: 166–172.

    Article  Google Scholar 

  • — andS. Murakami. 1983. Effects of cycloheximide and chloramphenicol on chloroplast replication in synnchronously dividing cultured cells ofEuglena gracilis. New Phytol.94: 521–529.

    Article  CAS  Google Scholar 

  • Hansley, E.S. andR.P. Wagner. 1967. Synchronous mitochondrial division inNeurospora crassa. J. Cell Biol.35: 489–499.

    Article  Google Scholar 

  • Imamura, T. 1962. Characterization of the turnover of chloroplast deoxyribonucleic acid inChlorella. Biochim. Biophys. Acta61: 472–474.

    Google Scholar 

  • Kamata, Y., K. Kondo, T. Kuroiwa andT. Nagata. 1989. Acceleration of chloroplast division in somatic cell hybrids between mesophyll and cell culture protoplasts. Plant Cell Physiol.30: 140–150.

    Google Scholar 

  • Kameya, T. andN. Takahashi. 1971. Division of chloroplastin vitro. Jap. J. Genetics46: 153–157.

    Google Scholar 

  • Kiyohara, K. 1926. Beobachtungen uber die Chloroplasten teilunmg vonHydrilla verticillata Prest. Bot. Mag. Tokyo40: 1–6.

    Google Scholar 

  • Kuroiwa, T. 1973. Studies on mitochondrial structure and function inPhysarum polycephalum I. Fine structure, cytochemistry and3H-uridine autoradiography of a central body in mitochondria. Exp. Cell Res.78: 351–359.

    Article  PubMed  CAS  Google Scholar 

  • — 1974. Studies on mitochondrial structure and function inPhysarum polycephalum III. Electron microscopy of a large amount of DNA released from a central body in mitochondria by trypsin digestion. J. Cell Biol.63: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • — 1982. Mitochondrial nuclei. Inter. Rev. Cytol.75: 1–59.

    CAS  Google Scholar 

  • — andM. Hizume. 1974. Mitochondrial nucleoid staining with ammoniacal silver. Exp. Cell Res.87: 406–412.

    Article  PubMed  CAS  Google Scholar 

  • — andH. Kuroiwa. 1980. Inhibition ofPhysarum mitochondrial division by cytochalasin B. Experientia36: 193–194.

    Article  PubMed  CAS  Google Scholar 

  • — andT. Suzuki. 1981. Circular nuclei isolated from chloroplasts in a brown algaEctocarpus indicus. Exp. Cell Res.134: 457–461.

    Article  PubMed  CAS  Google Scholar 

  • S. Kawano andM. Hizume. 1976. A method of isolation of mitochondrial nucleoid ofPhysarum polycephalum and evidence of a basic protein. Exp. Cell Res.97: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • —,—and—. 1977. Studies on mitochondrial structure and function inPhysarum polycephalum V. Behavior of mitochondrial nucleoids throughout mitochondrial division cycle. J. Cell Biol.72: 687–697.

    Article  PubMed  CAS  Google Scholar 

  • —,—and—. 1978. Studies on mitochondrial structure and function inPhysarum polycephalum IV. Mitochondrial division cycle. Cytologia43: 119–136.

    CAS  Google Scholar 

  • Kuroiwa, T., H. Nagashima and I. Fukuda. 1989. Chloroplast division without DNA synthesis during the life cycle of the univellular algaCyanidium caldarium M-8 as revealed by quantitative fluorescence microscopy. Protoplasma (in press).

  • —,T. Suzuki, K. Ogawa andS. Kawano. 1981. The chloroplast nucleus: distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol.22: 381–396.

    Google Scholar 

  • Kusunoki, S. andY. Kawasaki. 1936. Beobachtungen uber die Chloroplastenteilung bei einigen Blutenpflanzen. Cytologia7: 530–534.

    Google Scholar 

  • Leech, R.M. 1976. The replication of plastids in higher plants.In: M.M. Yeoman, ed., Cell Division in Higher Plants, pp. 135–159. Academic Press, London.

    Google Scholar 

  • —,W.W. Thomson andK.A. Platt-Aloia. 1981. Observations on the mechanism of chloroplast division in higher plants. New Phytol.87: 1–9.

    Article  Google Scholar 

  • Leonard, J.M. andR.J. Rose. 1970. Sensitivity of the chloroplast division cycle to chloramphenicol and cycloheximide in cultured spinach leaves. Plant Sci. Lett.14: 159–167.

    Article  Google Scholar 

  • Lebrun, M., J.F. Briat andJ.P. Laulhere. 1986. Characterization and properties of the spinach chloroplast transcriptionally active chromosome isolated at high ionic strength. Planta169: 505–512.

    Article  CAS  Google Scholar 

  • Luck, B.T. andE.G. Jordan. 1980. The mitochondria and plastids during microsporogenesis inHyacinthoides non-scripta (L.) Chouard. Ann. Bot.45: 511–514.

    Google Scholar 

  • Mason, D.G. andD.M. Poweson. 1956. Nuclear division as observed in live bacteria by a new technique. J. Bacteriol.71: 474–479.

    PubMed  CAS  Google Scholar 

  • Maltzahn, K.V. andK. Muhlethaler. 1962. Observations on chloroplast division in dedifferentiating cells ofSplachnum ampullaceum (L.) Hedw. Naturwissenschaften49: 308–309.

    Article  Google Scholar 

  • Manton, I. andM. Parke. 1960. Further observations on small green flagellates with special reference to possible relatives ofChromulina pusilla Butcher. J. Mar. Biol. Associ. U.K.39: 275–298.

    Article  Google Scholar 

  • Matsumoto, A. 1981. Electron microscopic observations of surface projections and related intracellular structures ofChlamydia organisms. J. Electron Microsc.30: 315–320.

    CAS  Google Scholar 

  • Mita, T. andT. Kuroiwa. 1988. Division of plastid by a plastid-dividing ring inCyanidium caldarium. Protoplasma suppl1: 133–152.

    Google Scholar 

  • —,T. Kanbe, K. Tanaka andT. Kuroiwa. 1986. A ring structure around the dividing plane of theCyanidium caldarium chloroplast. Protoplasma130: 211–213.

    Article  Google Scholar 

  • Miyamura, S., T. Nagata andT. Kuroiwa. 1986. Quantitative fluorescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protoplasma133: 66–72.

    Article  CAS  Google Scholar 

  • Muhlethaler, K. andP.R. Bell. 1962. Untersuchungen uber die Kontinuitat von Plastiden und Mitochondrien in der Eigelle vonPteridium equilium (L.) Kuhn. Naturwissanschaften49: 63–64.

    Article  Google Scholar 

  • — andA. Frey-Wyssling. 1959. Entwicklung und Struktur der Proplastiden. J. Biophys. Biochem. Cytol.6: 509–512.

    Article  Google Scholar 

  • Nagashima, H. andI. Fukuda. 1981. Morphological properties ofCyanidium caldarium and related algae in Japan. Jpn. J. Phycol.29: 237–242.

    Google Scholar 

  • Nishibayashi, S. andT. Kuroiwa. 1982. Behavior of leucoplast nucleoids in the epidermal cell of onion (Allium cepa) bulb. Protoplasma110: 177–184.

    Article  Google Scholar 

  • Nemoto, Y., S. Kawano, S. Nakamura, T. Mita, T. Nagata andT. Kuroiwa. 1988. Studies on plastid-nuclei (nucleoids) inNicotiana tabacum L. I. Isolation of proplastid-nuclei from cultured cells and identification of proplastid-nuclear proteins. Plant Cell Physiol.29: 167–177.

    CAS  Google Scholar 

  • Nemoto, Y., T. Nagata andT. Kuroiwa. 1989. Studies on plastid nuclei (nucleoids) inNicotiana tabacum L. II. Disassembly and reassembly of proplastid nuclei isolated from cultured cells. Plant Cell Physiol.30: 445–454.

    CAS  Google Scholar 

  • Ohoyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi andH. Ozeki. 1986. Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature322: 572–574.

    Article  Google Scholar 

  • Possingham, J.V. 1980. Plastid replication and development in the life cycle of higher plants. Ann. Rev. Plant Physiol.31: 113–129.

    Article  CAS  Google Scholar 

  • — andM.E. Lawrence. 1983. Controls to plastid division. Inter. Rev. Cytol.84: 1–49.

    Article  CAS  Google Scholar 

  • — andW. Saurer. 1969. Changes in chloroplast number per cell during leaf development in spinach. Planta86: 186–194.

    Article  Google Scholar 

  • Rabinowitz, M. andH.H. Swift. 1970. Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. Physiol. Rev.50: 376–427.

    PubMed  CAS  Google Scholar 

  • Reiss, T. andG. Link. 1985. Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.). Eur. J. Biochem.148: 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Ridey, S.M. andR.M. Leech. 1970. Division of chloroplasts in an artificial environment. Nature227: 463–465.

    Article  Google Scholar 

  • Ris, H. andW. Plaut. 1962. Ultrastructure of DNA-containing areas in the chloroplast ofChlamydomonas. J. Cell Biol.13: 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Ryter, A. 1968. Association of the nucleus and the membrane of bacteria. A morphological study. Bacteriol. Rev.32: 39–54.

    PubMed  CAS  Google Scholar 

  • Sager, R. andM.R. Ishida. 1963. Chloroplast DNA inChlamydomonas. Proc. Nat. Acad. Sci. U.S.A.50: 725–730.

    Article  CAS  Google Scholar 

  • Schimper, A.F. 1883. Uber die Entwicklung der Chlorophyll-Korper und Farbkorper. Bot. Ztg.41: 105–112, 121–131, 137–146, 153–162, 863–817.

    Google Scholar 

  • Sellden, G. andR.M. Leech. 1981. Localization of DNA in mature and young wheat chloroplasts using the fluorescent probe 4′-6-diamidino-2-phenylindole. Plant Physiol.68: 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa, B.Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada andM. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J.5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Suzuki, K.I. andR. Ueda. 1975. Electron microscope observations on plastid division in root mreistematic cells ofPisum sativum L. Bot Mag. Tokyo88: 319–321.

    Article  Google Scholar 

  • Tewinkel, M. andD. Volkmann. 1987. Observations on dividing plastids in the protonema of the mossFunaria hygrometrica Sibth. Arrangement of microtubules and filaments. Planta172: 309–320.

    Article  Google Scholar 

  • Tsukada, H., Y. Mochizuki andS. Fujiwara. 1966. The nucleoids of rat liver cell microbodies. J. Cell Biol.28: 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Usuda, N., J.K. Reddy, T. Hashimoto andM.S. Rao. 1988. Immunocytochemical localization of liver-specific proteins in pancreatic hepatocytes of rat. Eur. J. Cell Biol.46: 299–306.

    PubMed  CAS  Google Scholar 

  • Whatley, J.M. 1974. The behavior of chloroplasts during cell division ofIsoetes lacustris. New Phytol.73: 139–142.

    Article  Google Scholar 

  • —. 1980. Plastid growth and division inPhaseolus vulgaris. New Phytol.86: 1–16.

    Article  Google Scholar 

  • Yasuda, T., T. Kurodwa andT. Nagata. 1988. Identification of preferential DNA synthesis and replication of plastids in tobacco cultured cells by medium renewal. Planta174: 235–241.

    Article  CAS  Google Scholar 

  • Yoshida, Y., J.P. Laulhere, C. Rozier andR. Mache. 1978. Visualization of folded chloroplast DNA from spinach. Biol. Cell32: 187–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroiwa, T. The nuclei of cellular organelles and the formation of daughter organelles by the “plastid-dividing ring”. Bot Mag Tokyo 102, 291–329 (1989). https://doi.org/10.1007/BF02488570

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488570

Key words

Navigation