Skip to main content
Log in

Control of growth and differentiation by cyclic AMP in fungi

  • Invited Article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

InSaccharomyces cerivisiae intracellular cAMP mediates environmental signals that regulate cellular metabolism and growth. The studies on the cAMP-requiring mutants and their suppressors in the yeast revealed that cAMP-dependent protein phosphorylation is involved in the G1 phase of the cell cycle, stimulation of the phosphoinositide pathway and the post-meiotic stage of spourlation, and that inhibition of cAMP-dependent protein phosphorylation is required to go into the GO stage of and to induce meiotic division. Growth of some filamentous fungi was observed with significantly reduced levels of cAMP, suggesting that cAMP may not be essential for growth in some species of fungi. Germination of fungal spores, yeast-mycelium dimorphism and hyphal morphogenesis of several species of fungi were affected by cAMP. cAMP was involved in extension of hyphae, formation of hyphal aggregates and fruit body formation. Phosphorylation of cellular proteins is required in these processes, and the nature of these proteins phosphorylated by cAMP-dependent protein kinase is important to the understanding of the role of cAMP for growth and differentistion in fungal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baserga, R., M. Costlow andG. Rovera. 1973. Changes in membrane function and chromatin temperate activity in diploid and transformed cells in culture. Fed. Proc.32: 2115–2118.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J.220: 345–360.

    PubMed  CAS  Google Scholar 

  • Botsford, J.L. 1981. Cyclic nucleotides in procaryotes. Microbiol. Rev.45: 620–642.

    PubMed  CAS  Google Scholar 

  • Boutelet, F., A. Petitjean andF. Hilger. 1985. Yeastcdc35 mutants are defective in adenylate cyclase and are allelic withcyr1 mutants whileCAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J.4: 2635–2641.

    PubMed  CAS  Google Scholar 

  • Boynton, A.L. andJ.F. Whitfield. 1983. The role of cyclic AMP in cell proliferation: a critical assessment of the evidence. Adv. Cyclic Nucl. Res.15: 193–294.

    CAS  Google Scholar 

  • Broek, D., T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers andM. Wigler. 1987. The S. cerevisiaeCDC25 gene product regulates theRAS/adenylate cyclase pathway. Cell48: 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Camonis, J.H., M. Kalékine, H. Garreau, E. Boy-Marcotte andM. Jacquet. 1986. Characterization, cloning and sequence analysis of theCDC25 gene which controls the cyclic AMP level ofSaccharomyces cerevisiae. EMBO J5: 375–380.

    PubMed  CAS  Google Scholar 

  • Casperson, G.F., N. Walker andH.R. Bourne. 1985. Isolation of the gene encoding adenylate cyclase inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA82: 5060–5063.

    Article  PubMed  CAS  Google Scholar 

  • Casselton, L. A. 1978. Dikaryon formation in the higher basidiomycetes.In: J.E. Smith and D.R. Berry, ed., The Filamentous Fungi, vol. 3, pp. 278–297. Arnold, London.

    Google Scholar 

  • Chattaway, F.W., P.R. Wheeler andJ. O'Reilly. 1981. Involvement of adenosine 3′: 5′-cyclic monophosphate in the germination of blastospores ofCandida albicans. J. Gen. Microbiol.123: 233–240.

    PubMed  CAS  Google Scholar 

  • Cruz, A.K., H.F. Terenzi, J.A. Jorge andH.F. Terenzi. 1988. Cyclic AMP-dependent, constitutive thermotolerance in the adenylate cyclase-deficientcr-1 (crisp) mutant ofNeurospora crassa. Curr. Genet.13: 451–454.

    Article  PubMed  CAS  Google Scholar 

  • Day, P.R. 1963. The structure of theA mating type factor inCoprinus lagopus: wild alleles. Genet Res. Camb.4: 323–325.

    Google Scholar 

  • De Vendittis, E., A. Vitelli, R. ZZahn andO. Fasano. 1986. Suppression of defectiveRAS1 andRAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. EMBO J.5: 3657–3663.

    PubMed  Google Scholar 

  • Dewerchin, M.A. andA.J. Van Laere. 1984. Trehalase activity and cyclic AMP content during early development ofMucor rouxii spores. J. Bacteriol.158: 575–579.

    PubMed  CAS  Google Scholar 

  • Ellis, R.W., D. DeFeo, T.Y. Shih, M.A. Gonda, H.A. Young, N. Tsuchida, D.R. Lowy andE.M. Scolnick. 1981. The p21src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of nomral vertebrate genes. Nature292: 506–511.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D.L., R.A. Johnson andC.E. Zeilig. 1976. The role of cyclic nucleotides in the cell cycle. Adv. Cyclic Nucl. Res.7: 69–114.

    CAS  Google Scholar 

  • Fujiyama, A., K. Matsumoto andF. Tamanoi. 1987. A novel yeast mutant defective in the processing of ras proteins: assessment of the effect of the mutation on processing steps. EMBO J.6: 223–228.

    PubMed  CAS  Google Scholar 

  • Fukui, Y. andY. Kaziro 1985. Molecular cloning and sequence analysis of aras gene fromSchizosaccharomyces pombe. EMBO J4: 687–691.

    PubMed  CAS  Google Scholar 

  • Fukui, Y., T. Kozasa, Y. Kaziro, T. Takeda andM. Yamamoto. 1986. Role of aras homolog in the life cycle of Schizosaccharomyces pombe. Cell44: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Gabrielides, C., J. Zrike andW.A. Scott. 1983. Cyclic AMP levels in relation to membrane phospholipid variations inNeurospora crassa. Arch. Microbiol.134: 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Gold, M.H. andT.M. Cheng. 1979. Conditions for fruit body formation in the white rot basidiomycetePhanerochaete chrysosporium. Arch. Microbiol.121: 37–41.

    Article  CAS  Google Scholar 

  • Gomes, S.L., L. Mennucci andJ.C.C. Maia. 1980. Induction ofBlastocladiella emersonii germination by cyclic adenosine-3′, 5′-monophosphate. Cell Different.9: 169–179.

    Article  CAS  Google Scholar 

  • Gottesman, M.M.. 1980. Genetic approaches to cyclic AMP effects in cultured mammalian cells. Cell22: 329–330.

    Article  PubMed  CAS  Google Scholar 

  • Hashiba, T. andT. Ishikawa. 1978. Effect of adenosine 3′, 5′-cyclic monophosphate on induction of sclerotia in Rhizoctonia solani. Phytopathology68: 1723–1727.

    Article  CAS  Google Scholar 

  • — andT. Ishikawa. 1975. Developmental changes in sclerotia of the rice sheath blight fungus, Phytopathology65: 159–162.

    Article  Google Scholar 

  • — andR.C. Staples. 1976. Nucleic acid metabolism in developing sclerotia of the rice sheath blight fungus (Rhizoctonia solani Kühn). J. Gen. Microbiol.96: 239–245.

    CAS  Google Scholar 

  • Hasunuma, K. andY. Shinohara. 1985. Characterization ofcpd-1 andcpd-2 mutants which affect the activity of orthophosphate regulated cyclic phosphodiesterase inNeurospora. Curr. Genet.10: 197–203.

    PubMed  CAS  Google Scholar 

  • Haylock, R.W., A. Economou andL.A. Casselton. 1980. Dikaryon formation inCoprinus cinereus: selection and identification ofB factor mutants. J. Gen. Microbiol.121: 17–26.

    Google Scholar 

  • Hunter, T.. 1987. A thousand and one protein kinases. Cell50: 823–829.

    Article  PubMed  CAS  Google Scholar 

  • Kotaoka, T., D. Broek andM. Wigler. 1985. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell43: 493–505.

    Article  Google Scholar 

  • —,S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach andM. Wigler. 1984. Genetic analysis of yeastRAS1 andRAS2 genes. Cell37: 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., I. Uno, T. Ishikawa andT. Takenawa. 1989. Activation of phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase by cAMP inSaccharomyces cerevisiae. J. Biol. Chem.264: 3116–3121.

    PubMed  CAS  Google Scholar 

  • Larsen, A.D. andP.S. Sypherd. 1974. Cyclic adenosine 3′, 5′-monophosphate and morphogenesis inMucor racemosus. J. Bacteriol.117: 432–438.

    PubMed  CAS  Google Scholar 

  • Masson, P., J.M. Jacquemin andM. Culot. 1984. Molecular cloning of thetsm0185 gene responsible for adenylate cyclase activity inSaccharomyces cerevisiae. Ann. Microbiol. (Inst. Pasteur)135: 343–351.

    Article  Google Scholar 

  • —,G. Lenzen, J.M. Jacquemin andA. Danchin. 1986. Yeast adenylate cyclase catalytic domain is carboxy terminal. Curr. Genet.10: 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., I. Uno andT. Ishikawa. 1983a. Control of cell division inSaccharomyces cervisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp. Cell Res.146: 151–161

    Article  PubMed  CAS  Google Scholar 

  • . 1983b. Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell32: 417–423.

    Article  Google Scholar 

  • . 1984. Identification of the structural gene and nonsense alleles for adenylate cyclase inSaccharomyces cervisiae. J. Bacteriol.157: 277–282.

    PubMed  CAS  Google Scholar 

  • . 1985. Genetic analysis of the role of cAMP in yeast. Yeast1: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • ,Y. Oshima andT. Ishikawa. 1982. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA79: 2355–2359.

    Article  PubMed  CAS  Google Scholar 

  • Medoff, J., E. Jacobson andG. Medoff. 1981. Regulation of dimorphism inHistoplasma capsulatum by cyclic adenosine 3′,5′-monophosphate. J. Bacteriol.145: 1452–1455.

    PubMed  CAS  Google Scholar 

  • Murayama, T..I. Uno, K. Hamamoto andT. Ishikawa 1985. A cyclic adenosine 3′,5′-monophosphate-dependent protein kinase mutant ofNeurospora crassa. Arch. Microbiol.142: 109–112.

    Article  CAS  Google Scholar 

  • Niimi, M., K. Niimi, J. Tokunaga andH. Nakayama. 1980. Changes in cyclic nucleotide level and dimorphic transition inCandida albicans. J. Bacteriol.142: 1010–1014.

    PubMed  CAS  Google Scholar 

  • Nikawa, J., P. Sass andM. Wigler. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene ofSaccharomyces cerevisiae. Mol. Cell. Biol.7: 3629–3636.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y. 1984. Turnover of inositol phospholipids and signal transduction. Science225: 1364–1370.

    Google Scholar 

  • Oyama, Y., T. Yoshida andH. Taguchi. 1974. The artificial cultivation of mycorrhiza-forming basidiomycetes. Mushroom Science IX (Part I): 719–731.

    Google Scholar 

  • Pall, M.L. 1981. Adenosine 3′,5′-phosphate in fungi. Microbiol. Rev.45: 462–480.

    PubMed  CAS  Google Scholar 

  • Pastan, I.H., G.S. Johson andW.B. Anderson. 1975. Role of cyclic nucleotides in growth control. Ann. Rev. Biochem.44: 491–522.

    Article  PubMed  CAS  Google Scholar 

  • Paveto, C., A. Epstein andS. Passeron. 1975. Studies on cyclic adenosine 3′,5′-monophosphate levels, adenylate cyclase and phosphodiesterase activities in the dimorphic fungusMucor rouxii. Arch. Biochem. Biophys.169: 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Paznokas, J.L., M.L. Tripp andK.F. Wertman. 1982. Mutants ofMucor racemosus insensitive to dibutyryl cAMP-mediated changes in cellular morphology. Exp. Myc.6: 185–189.

    Article  CAS  Google Scholar 

  • Powers, P.A. andM.L. Pall. 1980. Cyclic AMP-dependent protein kinase ofNeurospora crassa. Biochem. Biophys. Res. Commun.95: 701–706.

    Article  PubMed  CAS  Google Scholar 

  • Powers, S., T. Kataoka, O. Fasano, M. Goldfarb, J. Strathern, J. Broach andM. Wigler. 1984. Genes in S. cerevisiae encoding proteins with domains homologous to the mammalianras proteins. Cell36: 607–612.

    Article  PubMed  CAS  Google Scholar 

  • —,S. Michaelis, D. Broek, S.S. Anna-A, J. Field, I. Herskowitz andM. Wigler. 1986.RAM, a gene of yeast required for a functional modification ofRAS proteins and for production of mating pheromone a-factor. Cell47: 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J.R. andL.H. Hartwell. 1981. TheSaccharomyces cerevisiae cell cycle.In J.N. Strathern, E.W. Jones and J.R. Broach, ed., The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. pp. 97–142. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Raper, J.R. 1966. Genetics of Sexuality in Higher Fungi. Ronald Press, New York.

    Google Scholar 

  • Robinson, L.C., J.B. Gibbs, M.S. Marshall, I.S. Sigal andK. Tachell. 1987.CDC25: a component of theRAS-adenylate cyclase pathway inSaccharomyces cerevisiae. Science235: 1218–1221.

    PubMed  CAS  Google Scholar 

  • Robison, G.A., R.W. Butcher andE.W. Sutherland. 1971. Cyclic AMP. Academic Press, New York.

    Google Scholar 

  • Rubin, C.S. andO.M. Rosen. 1975. Protein phosphorylation. Annu. Rev. Biochem.44: 831–887.

    Article  PubMed  CAS  Google Scholar 

  • Sass, P., J. Field, J. Nikawa, T. Toda andM. Wigler. 1986. Cloning and characterization of the high-affinity cAMP phosphodiesterase ofSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA83: 9303–9307.

    Article  PubMed  CAS  Google Scholar 

  • Scott, W.A. 1976. Adenosine 3′: 5′-cyclic monophosphate deficiency inNeurospora crassa. Proc. Natl. Acad. Sci. USA73: 2995–2999.

    Article  PubMed  CAS  Google Scholar 

  • —,N.C. Mishra andE.L. Tatum. 1973. Biochemical genetics of morphogenesis inNeurospora. Brookhaven Symp. Biol.25: 1–18.

    Google Scholar 

  • —, andB. Solomon. 1975. Adenosine 3′, 5′-cyclic monophosphate and morphology inNeurospora crassa: drug-induced alterations. J. Bacteriol.122: 454–463.

    PubMed  CAS  Google Scholar 

  • Shilo, V., G. Simchen andB. Shilo. 1978. Initiation of meiosis in cell cycle initiation mutants ofSaccharomyces cerevisiae. Exp. Cell Res.112: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Shin, D-Y., K. Matsumoto, H. Iida, I. Uno andT. Ishikawa. 1987a. Heat shock response ofSaccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol. Cell. Biol.7: 244–250.

    PubMed  CAS  Google Scholar 

  • —,K. Uno andT. Ishikawa. 1987b. Control of the G1–G0 transition and G0 protein synthesis by cyclic AMP inSaccharomyces cerevisiae. Curr. Genet.12: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, U. andK. Esser. 1976. Genetics of fruit body production in higher basidiomycetes. I. Monokaryotic fruiting and its correlation with dikaryotic fruiting inPolyporus ciliatus. Mol. Gen. Genet.148: 183–197.

    Article  Google Scholar 

  • Swamy, S., I. Uno andT. Ishikawa. 1984. Morphogenetic effects of mutations at theA andB incompatibility factors inCoprinus cinereus. J. Gen. Microbiol.130: 3219–3224.

    Google Scholar 

  • ———. 1985a. Regulation of cyclic AMP metabolism by the incompatibility factors inCoprinus cinereus. J. Gen. Microbiol.131: 3211–3217.

    CAS  Google Scholar 

  • ———. 1985b. Regulation of cyclic AMP-dependent phosphorylation of cellular proteins by the incompatibility factors inCoprinus cinereus. J. Gen. Appl. Microbiol.31: 339–346.

    CAS  Google Scholar 

  • Tanaka, K., K. Matsumoto andA. Toh-e. 1988. Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J.7: 495–502.

    PubMed  CAS  Google Scholar 

  • Terenzi, H.F., M.M. Flawiá, M.T. Tellez-Iñón andH.N. Torres. 1976. Control ofNeurospora crassa morphology by cyclic adenosine 3′, 5′-monophosphate and dibutyryl cyclic adenosine 3′, 5′-monophosphate. J. Bacteriol.126: 91–99.

    PubMed  CAS  Google Scholar 

  • —,J.A. Jorge, J.E. Roselino andR.H. Migliorini. 1979. Adenylyl cyclase deficientcr-1 (crisp) mutant ofNeurospora crassa: cyclic AMP-dependent nutritional deficiencies. Arch. Microbiol.123: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Toda, T., S. Cameron, P. Sass, M. Zoller andM. Wigler 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell50: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • —,I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto andM. Wigler. 1985. In yeast,RAS proteins are controllimg elements of adenylate cyclase. Cell40: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Torres, H.N., M.M. Flawiá, H.F. Terenzi andM.T. Tellez-Iñón. 1975. Adenylate cyclase activity inNeurospora crassa. Adv. Cyclic Nucl. Res.5: 67–78.

    CAS  Google Scholar 

  • Tripp, M.L., R. Pinon, J. Meisenhelder andT. Hunter. 1986. Identification of phospho-proteins correlated with proliferation and cell cycle arrest inSaccharomyces cerevisiae: positive and negative regulation by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA83: 5973–5977.

    Article  PubMed  CAS  Google Scholar 

  • Uno, I., K. Fukami, H. Kato, T. Takenawa andT. Ishikawa. 1988. Essential role for phosphatidylinositol 4,5-bisphosphate in yeast cell proliferation. Nature333: 188–190.

    Article  PubMed  CAS  Google Scholar 

  • — andT. Ishikawa. 1971. Chemical and genetical control of induction of monokaryotic fruiting bodies inCoprinus macrorhizus Mol. Gen. Genet.113: 228–239.

    Article  CAS  Google Scholar 

  • ——. 1973. Metabolism of adenosine 3′, 5′-cyclic monophosphate and induction of fruiting bodies inCoprinus macrorhizus J. Bacteriol.113: 1249–1255.

    PubMed  CAS  Google Scholar 

  • ——. 1981. Adenosine 3′, 5′-monophosphate-receptor protein and protein kinase inCoprinus macrorhizus. J. Biochem.89: 1275–1281.

    PubMed  CAS  Google Scholar 

  • —— andT. Hashiba. 1985a. Detection of cyclic AMP levels and cyclic AMP-receptor protein in mycelia ofRhizoctonia solani forming sclerotia. Ann. Phytopath. Soc. Japan51: 183–189.

    CAS  Google Scholar 

  • ———. 1985b. Cyclic AMP-dependent phosphorylation of proteins in mycelia ofRhizoctonia solani forming sclerotia. Ann. Phytopath. Soc. Japan51: 190–198.

    CAS  Google Scholar 

  • —,K. Matsumoto, A. Hirata andT. Ishikawa. 1985c. Outer plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants ofSaccharomyces cerevisiae. J. Cell Biol.100: 1854–1862.

    Article  PubMed  CAS  Google Scholar 

  • —— andT. Ishikawa. 1983. Characterization of a cyclic nucleotide phosphodiesterase-deficient mutant in yeast. J. Biol. Chem.258: 3539–3542.

    PubMed  CAS  Google Scholar 

  • —,H. Mitsuzawa, K. Matsumoto, K. Tanaka, T. Oshima andT. Ishikawa. 1985d. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeastCYR1 andRAS2 genes inEscherichia coli. Proc. Natl. Acad. Sci. USA82: 7855–7859.

    Article  PubMed  CAS  Google Scholar 

  • ——,K. Tanaka, T. Oshima andT. Ishikawa. 1987. Identification of the domain ofSaccharomyces cerevisiae adenylate cyclase associated with the regulatory function ofRAS products. Mol. Gen. Genet.210: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Vale, V.L., S.L. Gomes, J.C.C. Maia andL. Mennucci. 1976. Transient cyclic AMP accumulation in germinating zoospores ofBlastocladiella emersonii. FEBS Lett.67: 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Van Laere, A.J.. 1986. Cyclic AMP, phosphodiesterase, and spore activation inPhycomyces blakesleeanus. Exp. Myc.10: 52–59.

    Article  Google Scholar 

  • Van Mulders, R.M. andA.J. Van Laere: 1984. Cyclic AMP, trehalase and germination ofPhycomyces blakesleeanus. J. Gen. Microbiol.130: 541–547.

    Google Scholar 

  • Watanabe, Y., Y. Iino, K. Furuhata, C. Shimoda andM. Yamamoto. 1988. TheS. pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J.7: 761–767.

    PubMed  CAS  Google Scholar 

  • Wertman, K.F. andJ.L. Paznokas. 1981. Effects of cyclic nucleotides upon the germination ofMucor racemosus sporangiospores. Exp. Myc.5: 314–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T. Control of growth and differentiation by cyclic AMP in fungi. Bot. Mag. Tokyo 102, 471–490 (1989). https://doi.org/10.1007/BF02488129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488129

Key words

Navigation