Skip to main content
Log in

Three-dimensional isodyne stress analysis—Present state, trends, theoretical problems

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The paper presents and discusses theoretical bases and methodology of development of two- and three-dimensional analytical and optical isodynes. Attention is given to the theoretical admissibility of the major components of the physical and mathematical models which are taken as the theoretical basis of the isodynes, and of the related analytical and experimental procedures of stress analysis. Efficiency and reliability of the nondestructive isodyne stress analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leipholz HEE. On the role of analysis in mechanics.Trans of the CSME, 1983, 7 (1): 3–7

    MathSciNet  Google Scholar 

  2. Hirschfeld Th. Instrumentation in the next decade.Science, 1985, 230: 286–291

    Google Scholar 

  3. Drake B, et al. Imaging crystal polymers, and processes in water with the atomic force microscope.Science, 1989, 243: 1586–1589

    Google Scholar 

  4. Kobayashi AS (Ed). Handbook on Experimental Mechanics. Society for Experimental Mechanics and Prentice-Hall, Englewood Cliffs, New Jersey 07632, Second Edition, 1993

    Google Scholar 

  5. Kendall K. Adhesion: molecules and mechanics.Science, 1994, 263: 1720–1725

    Google Scholar 

  6. Cohen ML. Predicting useful materials.Science, 1993, 261: 307–308

    Google Scholar 

  7. Popper KR. The Logic of Scientific Discovery. London: Harper and Row, 1977

    MATH  Google Scholar 

  8. Brillouin L. Scientific Uncertainty and Information. New York, London: Academic Press, 1964

    MATH  Google Scholar 

  9. Kac M. Some mathematical models in science.Science, 1969, 166 (3906): 695–699

    Google Scholar 

  10. Krajewski W. Correspondence Principle and Growth of Science. D Reidel Publ Dordrecht, 1977

  11. Kuhn TS. The Structure of Scientific Revolution. Chicago: University of Chicago Press. 1970

    Google Scholar 

  12. Oreaskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation of numerical models in earth sciences.Science, 1994, 263: 641–646

    Google Scholar 

  13. Pindera JT. Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation. In: Pindera JT ed. New Physical Trends in Experimental Mechanics, (CISM Courses and Lectures No. 264). Wien, New York: Springer-Verlag, 1981. 199–327

    Google Scholar 

  14. Feynman R. The Character of Physical Law. Cambridge, Massachusetts: The MIT Press, 1993.

    Google Scholar 

  15. Doeblin EO. Measurement Systems. New York: McGraw-Hill, 1983

    Google Scholar 

  16. Pindera JT, Krishnamurthy AR. Characteristic relations of flow birefringence. Part 1—Relations in transmitted radiation. Part 2—Relations in scattered radiation.Experimental Mechanics, 1978, 18: 1–10, 41–48

    Article  Google Scholar 

  17. Krishnamurthy AR, Pindera JT. Study of basic patterns of light scattering in aqueous solution of milling yellow.Experimental Mechanics, 1982, 22: 1–7

    Article  Google Scholar 

  18. Pindera JT. Advanced experimental mechanics in modern engineering science and technology.Transactions of the CSME, 1987, 11: 125–138

    Google Scholar 

  19. Pindera JT, Hecker FW. Basic theory and experimental techniques of the strain-gradient method.Experimental Mechanics, 1987, 27: 314–327

    Article  Google Scholar 

  20. Pindera JT, Hecker FW, Wen B. Testing theoretical bases of caustic methods in fracture mechanics and stress analysis.Theoretical and Applied Fracture Mechanics, 1991, 15: 11–33

    Article  Google Scholar 

  21. Pindera M-J, Pindera JT, Ji X. Three-dimensional effects in beams: isodyne assessment of a plane solution.Experimental Mechanics, 1989, 29: 23–31

    Article  Google Scholar 

  22. Pindera JT. Local effects and defect criticality in homogeneous and laminated structures.Trans of the ASME, J Pressure Vessel Technology, 1989, 111: 136–150

    Google Scholar 

  23. Pindera JT, Pindera M-J. Isodyne Stress Analysis. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1989

    Google Scholar 

  24. Sokolnikoff IS. Mathematical Theory of Elasticity. New York: McGraw-Hill, 1956

    MATH  Google Scholar 

  25. Pindera JT, Straka P. Response of the integrated polariscope.Journal of Strain Analysis, 1973, 8: 65–76

    Google Scholar 

  26. Pindera JT, Mazurkiewicz S. Photoelastic isodynes: a new type of stress-modulated light intensity distribution.Mechanics Research Communications, 1977, 4: 247–252

    Article  Google Scholar 

  27. Mazurkiewicz SB, Pindera JT. Integrated plane photoelastic method—Application of photoelastic isodynes.Experimental Mechanics 1979, 19: 225–234

    Article  Google Scholar 

  28. Pindera JT. Analytical foundations of the isodyne photoelasticity.Mechanics Research Communications, 1981, 8: 391–397

    Article  MATH  Google Scholar 

  29. Pindera JT. New development in photoelastic studies: isodyne and gradient photoelasticity. In: Chiang FP ed. Incoherent Optical Techniques in Experimental Mechanics.Optical Engineering, 1982, 21: 672–678

  30. Pindera JT, Krasnowski BR, Pindera M-J. Theory of elastic and photoelastic isodynes. Samples of applications in composite structures.ESP Much, 1985, 25: 272–281

    Google Scholar 

  31. Pindera JT. New Research perspective opened by isodyne and strain-gradient photoelasticity. In: Nauseate M, Kawata K eds. Photoelasticity. Springer-Verlag, 1986

  32. Pindera JT. Apparatus for determination of elastic isodynes and of general state of birefringence whole-field-wise using the device for birefringence measurements in the scanning mode (Isodyne Polariscope). United States Patent, No. 4, 703, 918, Nov. 3, 1987

  33. Thum A, Peterson C, Svenson O. Verformung, Spannung und Kerbwirkung (Deformation, Stress and Notch Action). VDI-Verlag, Düsseldorf, 1960

    Google Scholar 

  34. Pindera JT, Wang G. Isodyne stress analysis of adehsively bonded symmetric joints.Experimental Mechanics, 1992, 32: 348–356

    Article  Google Scholar 

  35. Srinath LS. Scattered Light Photoelasticity: New Delhi: The McGraw-Hill Co, 1983

    Google Scholar 

  36. Pindera JT, Straka P. On physical measures of rheological responses of some materials in wide ranges of temperature and spectral frequency.Rheological Acta, 1974, 13: 338–351

    Article  Google Scholar 

  37. Ramachandran GN, Ramaseshan S. Crystal optics. In: S. Flügge ed. Handbook der Physik. Berlin: Springer-Verlag, 1961. 25, 1: 1–217

    Google Scholar 

  38. Pindra JT, Straka P, Tschinke MF. Actual Thermoelastic. Response of Some Engineering Materials and Its Applicability in Investigations of Dynamic Responses of Structures. VDI-Berichte, 1978. (No. 313a) 579–584

    Google Scholar 

  39. Born M, Wolf E. Principles of Optics. New York: Pergamon Press, 1975

    MATH  Google Scholar 

  40. Kerker M. The Scattering of Light. New York: Academic Press, 1969

    Google Scholar 

  41. Bui HD. Thèorie linèaire de la rupture. Revue Francaise de Mécanique, 1983, No.3, 3–8

    MATH  Google Scholar 

  42. Pindera JT, Krasnowski BR. Determination of stress intensity factors in thin and thick plates using isodyne photoelasticity. In: Simpson LA ed. Fracture Problems and Solutions in the Energy Industry. Oxford and New York: Pergamon Press, 1982, 147–156

    Google Scholar 

  43. Pindera JT. Actually Three-Dimensional Stresses and Related Dynamic. Fractures in Some Adhesively Bonded Structures. In: Suong V Hoa and Raymond Gauvin eds. Composite Structures and Materials, London and New York: Elsevier Applied Science. 1992. 332–340

    Google Scholar 

  44. Zehnder AT. On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel.J Mech Phys Solids, 1991, 39: 385–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pindera, J.T. Three-dimensional isodyne stress analysis—Present state, trends, theoretical problems. Acta Mech Sinica 11, 97–121 (1995). https://doi.org/10.1007/BF02487618

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487618

Key Words

Navigation