Skip to main content
Log in

Chloride migration coefficient of self-compacting concrete

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this article laboratory and analytical studies of the chloride migration coefficient, D, are presented. The result of studies on chloride migration of Self-Compacting Concrete, SCC, are compared with the corresponding properties of normal concrete with the same water-cement ratio, w/c and air content. Both 28 and 90 days' age applied at the start of the testing. Six SCC were studied and 2 NC, all with w/c=0.39. The effect of normal and reversed order of mixing (filler last), increased amount of filler, type of filler, limestone powder, increased air content and large hydrostatic concrete pressure were investigated.

Résumé

Cet article traite des études en laboratoire et des analyses concernant le coefficient de migration du chlorure. Le résultat des études sur l'admission en chlorure du béton autocompactant a été comparé avec les propriétés de celles d'un béton courant ayant le même taux d'eau/ciment et la même teneur en air. Des bétons de 28 et de 90 jours ont été utilisés au début des tests. L'étude a porté sur 6 bétons auto-compactants et 2 bétons normaux, tous ayant un taux d'eau/ciment de 0,39. C'est dans ce contexte qu'a été étudiée l'influence d'un mélange normal et inversé (dernier apport), de l'augmentation de la quantité de matériau de remplissage, du type de matériau de remplissage, de la poudre de pierre à chaux, de l'augmentation de la teneur en air et d'une forte compression hydrostatique du béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nilsson, M. and Petersson, Ö., ‘The first bridge made of SCC’,Väg-och Vattenbyggaren (2) (1998) 28–31.

    Google Scholar 

  2. Söderlind, L., ‘Full-scale tests of SCC for dwelling houses’, in ‘Symposium on SCC’, Stockholm, Eds. Skarendahl, Å, and Petersson, Ö. (RILEM, 1999) 723–728.

  3. Persson, B., ‘Mix proportions and strength of SCC for production of high strength poles, piles and pillars’, in ‘1. Münchener Baustoffseminar Selbstverdichtender Beton’, Oct. 2001, Ed. Peter Schiessl (TUM, Munich, 2001) 31–39.

    Google Scholar 

  4. Persson, B., ‘Assessment of D, Internal Frost Resistance, Salt Frost Scaling and Sulphate Resistance of SCC’, TVBM-3100, Lund Institute of Technology, Lund (2001) 86 p.

    Google Scholar 

  5. CTH Rapid Test for Determination of D in Concrete, NT BUILD 492 (2000).

  6. Tang, L. and Nilsson, L.-O., ‘Modelling of chloride penetration into concrete—Tracing five years' field exposure’,Concrete Science Engineering 2 (2000) 170–175.

    Google Scholar 

  7. Johannesson, B., ‘Transport and sorption phenomena in concrete and other porous media’, TVBM-1019 Lund Institute of Technology, Lund (2000) 491 p.

    Google Scholar 

  8. AASHTO T 271-831, ‘Rapid determination of chloride permeability of concrete’.

  9. Geiker, M., Thaulow, N. and Andersen, P.J., ‘Assessment of rapid test of concrete permeability test of concrete with and without mineral admixtures’, in ‘Durability of Concrete and Components’, Brighton, (Chapman & Hall, 1990) 52–61.

    Google Scholar 

  10. Persson, B., ‘A background for the choice of mix design of the concrete for the Great Belt link’, Report U91.02, Div. Building Materials, Lund Institute of Technology, Lund, (1991) 102 p.

    Google Scholar 

  11. Boubitsas, D. and Paulou, K., ‘SCC for marine environment’, TVBM-5048, Lund Institute of Technology, Lund (2000) 55 p.

    Google Scholar 

  12. Buenfeld, N., Personal information, Imperial College, London (2001).

    Google Scholar 

  13. Persson, B., ‘Moisture in concrete subjected to different kinds of curing’,Mater. Struct. 30 (1997) 533–544.

    Article  Google Scholar 

  14. Persson, B., ‘Self-desiccation and Its Importance in Concrete Technology’,Nordic Concrete Research 20 (1998) 120–129.

    Google Scholar 

  15. Persson, B., ‘Shrinkage of HPC’, in ‘International Conference on early Age Cracking in Concrete’, Haifa, Ed. Bentur, A. (RILEM, 2001) 301–311.

  16. Powers, T.G. and Brownyard, T.L., ‘Studies of the physical properties of hardened Portland cement paste’,PCA 22. (1948) 473–488. 845–864.

    Google Scholar 

  17. Nilsson, L.-O., Hedenblad, G. and Norling-Mjörnell, K. ‘Suction after long time’, HPC Handbook, Svensk Byggtjänst, Stockholm, 2000, 209–226.

    Google Scholar 

  18. Persson, B., ‘Seven-year study of the effect of silica fume in concrete’,Advanced Cement-Based Materials 7 (1998) 139–155.

    Article  Google Scholar 

  19. Castel, A., François, R. and Arliguie, G., ‘Clarification of corrosion of reinforcement in concrete structures exposed to chloride environment’, in ‘fib Meeting and the Nordic Mini Seminar’, Gothenbourg, Sweden (2001) 10 p.

  20. Collepardi, M.et al., ‘The kinetics of chloride ions penetrations in concrete’,Il Cemento 67 (1970) 157–164.

    Google Scholar 

  21. Tuutti, K., ‘Corrosion of steel in concrete’, Report 4:82, CBI, Stockholm (1982).

    Google Scholar 

  22. Tang, L. and Nilsson, L.-O., ‘Rapid determination of chloride diffusivity of concrete by applying an electric field’,ACI Material Journal 49 (1) (1992) 49–53.

    Google Scholar 

  23. Maage, M., Helland, S. and Carlsen, J.E., ‘Chloride penetration in HPC exposed to marine environment’, RILEM Workshop on Durability, Ed. H. Sommer (1994) 194–207.

  24. Poulsen, E., ‘Predict. Models STAR 53’, Danish Road Direct., Ed. Nilsson, L.-O. (1996).

  25. Pettersson, Ö., ‘Dispersion and frost resistance investigation of four types of limestone filler for SCC’, 2000-27, Cement and Concrete Institute, Stockholm, 2000, 14 p.

    Google Scholar 

  26. Neville, A.M. and Brooks, J.J., ‘Concrete Technology’ (Longman, Singapore, 1987) 110.

    Google Scholar 

  27. Persson, B., ‘Long-term shrinkage of HPC’ in 10th Congress on the Chemistry of Cement, 2ii073, Gothenburg, Ed. Justnes, H. (1997) 9 p.

  28. Persson, B., ‘Long-term effect of silica fume on the principal properties of low-temperature-cured ceramic’,Cement and Concrete Research 27 (1997) 1667–1680.

    Article  Google Scholar 

  29. Persson, B., ‘Pozzolanic interaction between Portland cement and silica fume in concrete’, in ‘Sixth CANMET/ACI Int. Conference’, Bangkok (1998) 631–660.

  30. Persson, B., ‘Chloride diffusion coefficient and salt frost scaling of SCC and of NC’, Nordic Seminar-fib Meeting, Chalmers, Gothenburg. Ed. Nilsson, L.-O. (2001) 13 p.

  31. Persson, B., ‘Chloride migration coefficient of SCC’, in ‘Nordic Seminar on Durability of Exposed Concrete Containing Secondary Cementitious Materials’, Hirtshals. Ed. D. Bager. Publ. by Nordic Concrete Federation, Oslo (2001) 187–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Dr. Bertil Persson is a RILEM Senior Member. He participates in RILEM TCs LTP' Life time performance of materials and structures’, URM ‘Use of recycled materials’, 196-ICC ‘Internal curing of concretes’ and 195-DTD ‘Recommendation for test methods for autogenous deformation and thermal dilation of early age concrete’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, B. Chloride migration coefficient of self-compacting concrete. Mat. Struct. 37, 82–91 (2004). https://doi.org/10.1007/BF02486603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486603

Keywords

Navigation