Skip to main content
Log in

Influence of hydration reaction on engineering properties of hardening concrete

  • List of Papers
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The engineering properties of hardening concrete depend on the microstructure of the cementitious material, and thus on the amount of hydration products formed. A determining measure for the amount of hydration products is the amount of reacted cement, which can be described by means of the degree of hydration. An extended experimental program was carried out in order to verify the influence of the degree of hydration on the engineering properties of hardening concrete. The instantanecous and time dependent mechanical behaviour was investigated experimentally on hardening concrete with different compositions. Portland cement as well as blast furnace slag cement were considered. Furthermore, the fracture energy of hardening concrete was investigated, using a deformation controlled three-point bending test. It was concluded that the degree of hydration is a fundamental parameter for the description of hardening concrete, including time-dependent mechanical behaviours and fracture properties. Based on the experimental results and on a phenomenological view of hydration, engineering models were developed, enabling an accurate simulation of the behaviour of early-age concrete (i.e. first 28 days).

Résumé

Les propriétés mécaniques du béton en cours de durcissement dépendent de la microstructure du ciment qui le compose, ainsi que de la quantité de ciment hydraté qui a été formée. Un des facteurs déterminants, en ce qui concerne la quantité de ciment hydraté, est la quantité de ciment qui a réagi, et qui peut être traduite par le degré d'hydratation. Un programme expérimental exhaustif a été mené afin de vérifier l'influence du degré d'hydratation sur les propriétés mécaniques des bétons en cours de durcissement. Les comportements mécaniques instantanés et dans le temps ont fait l'objet d'études expérimentales et ce, pour des bétons de différentes compositions. Ces études ont pris en compte aussi bien le ciment Portland que le ciment de haut fourneau. En outre, l'énergie de fissuration du béton en phase de durcissement a été étudiée au moyen de tests de flexion en trois points, avec maîtrise des déformations. La conclusion que l'on a pu tirer de ces études est que le degré d'hydratation est un paramètre fondamental pour la description des bétons en cours de durcissement, paramètre auquel il faut ajouter les comportements mécaniques dans le temps, ainsi que les propriétés à la rupture. Des modèles ont été développés à partir des résultats expérimentaux et des observations phénoménologiques de l'hydratation; ces modèles permettent de simuler précisément le comportement du béton au jeune âge (c'est-à-dire lors des 28 premiers jours).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Schutter, G. and Taerwe, L., ‘General hydration model for portland cement and blast furnace slag cement’,Cem. Con. Res. 25 (3) (1995) 593–604.

    Article  Google Scholar 

  2. De Schutter, G. and Taerwe, L., ‘Specific heat and thermal diffusivity of hardening concrete’,Mag. Con. Res. 47 (172) (Sept. 1995) 203–208.

    Google Scholar 

  3. De Schutter, G. and Taerwe, L., ‘Degree of hydration-based description of mechanical properties of early age concrete’,Mater. Struct. 29 (July 1996) 335–344.

    Article  Google Scholar 

  4. De Schutter, G., ‘Extension towards early age concrete of the CEB-FIP Model Code 1990 stress-strain relation for short-term compressive loading’,ACI Mat. J. 96 (1) (1999) 95–100.

    Google Scholar 

  5. De Schutter, G. and Taerwe, L., ‘Towards a more fundamental non-linear basic creep model for early age concrete’,Mag. Con. Res. 49 (180) (Sept. 1997) 195–200.

    Google Scholar 

  6. De Schutter, G., ‘Degree of hydration-based Kelvin model for the basic creep of early age concrete’,Mater. Struct. 32 (May 1999) 260–265.

    Article  Google Scholar 

  7. De Schutter, G. and Taerwe, L., ‘Fictitious degree of hydration method for the basic creep of early age concrete’,Mater. Struct. 33 (July 2000) 370–380.

    Article  Google Scholar 

  8. De Schutter, G. and Taerwe, L., ‘Fracture energy of concrete at early ages’,Mater. Struct. 30 (March 1997) 67–71.

    Article  Google Scholar 

  9. De Schutter, G., ‘Simulation of thermal cracking in massive hardening concrete elements using an internal parameter related to the hydration reaction’, in ‘Engineering Computational Technology’, Proceedings of the second international conference, Leuven, September 2000 (Civil-Comp Press Edinburgh, 2000) 7–14.

  10. Van Breugel, K., ‘Simulation of hydration and formation of structure in hardening cement-based materials’, doctoral dissertation, Technical University of Delft, The Netherlands, 1991.

    Google Scholar 

  11. Garboczi, E. J., ‘Computational materials science of cement-based materials’,Mater. Struct. 26 (1993) 191–195.

    Article  Google Scholar 

  12. Powers, T. C. and Brownyard, T. L., ‘Studies of the physical properties of hardened portland cement paste. Part 6. Relation of physical characteristics of the paste to compressive strength’,J. ACI 18 (7) (1947) 845–864.

    Google Scholar 

  13. Powers, T. C., ‘Physical properties of cement paste’, in ‘Fourth Int. Symp. on the Chemistry of Cement’, Washington, 1960, 577–613.

  14. Neville, A. M., ‘Properties of Concrete’ (Pitman Publ. Ltd, London, 1981).

    Google Scholar 

  15. Weigler, H. and Karl, S., ‘Young concrete. Part 1: Stress-Toughness-Deformation’,Betonwerk, Fertigteil, Technik book6 (1974), 392–401 (in German).

    Google Scholar 

  16. Ross, A. D., ‘A note on the maturity and creep of concrete’,RILEM Bulletin (March 1959) 55–57.

  17. Neville, A. M., Dilger, W. H. and Brooks, J. J., ‘Creep of plain and structural concrete’, Construction Press, London and New York, 1983.

    Google Scholar 

  18. Meyers, B. L. and Slate, F. O., ‘Creep and creep recovery of plain concrete as influenced by moisture conditions and associated variables’,Mag. Con. Res. 22 (70) (1970) 37–41.

    Google Scholar 

  19. Ghosh, R. S., ‘A hypothesis on mechanism of maturing creep of concrete’,Mater. Struct. 6 (31) (1973) 23–27.

    Google Scholar 

  20. Khalil, S. M. and Ward, M. A., ‘Effect of degree of hydration upon creep of mortars containing calcium lignosulphonate’,Mag. Con. Res. 29 (98) (1977) 19–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Prof. Dr. Geert De Schutter is a RILEM Senior Member. He participates in the work of RILEM TC 181-EAS “Early age shrinkage induced stresses and cracking in cementitious systems”. He was also awarded the 2001 Robert L'Hermite Medal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schutter, G. Influence of hydration reaction on engineering properties of hardening concrete. Mat. Struct. 35, 447–452 (2002). https://doi.org/10.1007/BF02483131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483131

Keywords

Navigation