Skip to main content
Log in

Effect of high volume fly ash on mechanical properties of fiber reinforced concrete

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper reports the effects of incorporating high volume fly ash in fiber reinforced concrete. Fly ash was mixed as a partial fine aggregate replacement of approximately one third of the fines volume. The fibers were polypropylene or steel fibers at a maximum proportion of 1% by volume of the concrete. The results showed that fiber reinforced concrete that included high fly ash volume achieved compressive and tensile strength values that are more than double those of concrete without fly ash. Values of other mechanical properties have also achieved significant increase due to fly ash addition. It is suggested that a large quantity of fly ash is necessary to enhance the efficiency of fiber reinforcement. Polypropylene fibers resulted in gains up to 50% while steel fibers achieved gains up to more than 100%. This enhancement is believed to be due to the microstructural modification and densification in the transition zone between the matrix and the fibers.

Résumé

Cet article décrit les effets de la cendre volante quand elle est incorporée, en grande quantité, à du béton enrobé de fibres. D'une part, la cendre volante est mélangée au béton de manière à remplacer le contenu en granulat fin qui équivaut à environ un tiers du volume des matériaux fins. D'autre part, le béton est enrobé de fibres, à base de polypropylène ou d'acier, dans une proportion maximale de 1% par volume de béton. Les résultats obtenus démontrent que, mélangé à une quantité volumineuse de cendre volante, le béton enrobé à l'aide de fibres offre, entre autres propriétés mécaniques, une résistance à des efforts de compression et de traction qui dépasse nettement le double de celle que l'on obtient avec du béton dépourvu de cendre volante. On en déduit qu'une grande quantité de cendre volante s'avère nécessaire pour améliorer l'efficacité du renforcement à base de fibres. En outre, l'utilisation de fibres de polypropylène permet d'atteindre une efficacité jusqu' à 50%, tandis que cette dernière excède 100% avec des fibres d'acier. Ces améliorations sont attribuées à la modification et à la densification microstructurelles qui ont lieu dans la zone de transition entre la matrice de béton et les fibres utilisées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramachandran, V.S., Feldman, R.F. and Beaudoin, J.J., ‘Concrete Science’ (Heyden and Son Ltd, London, 1981).

    Google Scholar 

  2. Shah, S.P., ‘Do fibers increase the tensile strength of cement based matrixes?’,ACI Materials Journal 88 (6) (1991) 595–602.

    Google Scholar 

  3. Carr, K., ‘Polypropylene and steel fiber combinations’,Concrete (London) 34 (8) (2000) 48–50.

    Google Scholar 

  4. Carr, K., ‘Making good concrete better’,Concrete (London) 32 (10) (1998) 16–17.

    Google Scholar 

  5. Alhozaimy, A.M., Soroushian, P. and Mirza, F., ‘Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials’,Cement and Concrete Composites 18 (2) (1996) 85–92.

    Article  Google Scholar 

  6. Swamy, R.N. and Mangat, P.S., ‘Onset of cracking and ductility of steel fiber concrete’,Cement and Concrete Research 5 (1) (1975) 37–53.

    Article  Google Scholar 

  7. Nataraja, M.C., Dhang, A.P. and Gupta, A.P., ‘Stress-strain curves for steel-fiber reinforced concrete under compression’,Cement and Concrete Composites 21 (5–6) (1999) 383–390.

    Article  Google Scholar 

  8. Balendran, R.V., Zhou, F.P., Nadeem, A. and Leung, Y.T. ‘Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete’,Building and Environment 37 (12) (2002) 1361–1367.

    Article  Google Scholar 

  9. Langley, W.S., Carette, G.G. and Malhotra, V.M., ‘Structural concrete incorporating high volumes of ASTM Class F fly ash’,ACI Materials Journal 86 (5) (1989) 507–514.

    Google Scholar 

  10. Poon, C.S., Lam, L. and Wong, Y.L., ‘Study on high strength concrete prepared with large volumes of low calcium fly ash’,Cement and Concrete Research 30 (3) (2000) 447–455.

    Article  Google Scholar 

  11. Malhotra, V.M., ‘CANMET investigations dealing with high-volume fly ash concrete’, In: ‘Advances in Concrete Technology’ (Malhotra, V.M., ed., 1994) 445–482, CANMET, Ottawa, Canada.

    Google Scholar 

  12. Mehta, P.K., ‘Advancements in concrete technology’,Concrete International 21 (6) (1999) 69–76.

    Google Scholar 

  13. Ravina, D., ‘Mechanical properties of structural concrete incorporating a high volume of class F fly ash as partial fine sand replacement’,Mater. Struct. 31 (3) (1998) 84–90.

    Google Scholar 

  14. Halse, Y., Pratt, P.L., Dalziel, J.A. and Gutteridge, W.A., ‘Development of microstructure and other properties in fly ash OPC systems’,Cement & Concrete Research 14 (4) (1984) 491–498.

    Article  Google Scholar 

  15. Jun-Yuan, H., Scheetz, B.E. and Roy, D.R., ‘Hydration of fly ash—Portland cements’,Cement & Concrete Research 14 (4) (1984) 505–512.

    Article  Google Scholar 

  16. Chan, Y.-W. and Li, V.C., ‘Effects of transition zone densification on fiber/cement paste bond strength improvement’,Advanced Cement Based Materials 5 (1) (1997) 8–17.

    Article  Google Scholar 

  17. Bentur, A., Diamond, S. and Mindess, S., ‘Microstructure of the steel fibre-cement interface’,Journal of Materials Science 20 (10) (1985) 3610–3620.

    Article  Google Scholar 

  18. Stucke, M.S. and Majumdar, A.J., ‘Microstructure of glass fibre-reinforced cement composites’,J. Mater. Sci. 11 (6) (1976) 1019–1030.

    Google Scholar 

  19. Wei, S., Mandel, J.A. and Said, S., ‘Study of the interface strength in steel fiber-reinforced cement-based composites’,ACI Journal 83 (4) (1986) 597–605.

    Google Scholar 

  20. Al-Khalaf, M.N., Page, C.L. and Ritchie, A.G.B., ‘Effects of fibre surface composition on mechanical properties of steel fibre reinforced mortars’,Cement & Concrete Research 10 (1) (1980) 71–77.

    Article  Google Scholar 

  21. Al-Khalaf, M.N. and Page, C.L., ‘Steel/mortar interface: microstructural features and mode of failure’,Cement and Concrete Research 9 (2) (1979) 197–207.

    Article  Google Scholar 

  22. ASTM Annual Book of ASTM Standards, Section 4, V. 4.02, Concrete and Aggregates Voluem 4.02), ASTM, Philadelphia, (1993) USA.

  23. Mor, A., ‘Steel-concrete bond in high-strength lightweight concrete’,ACI Materials Journal 89 (1) (1992) 76–82.

    Google Scholar 

  24. Gao J, Sun W and Sun K. M., ‘Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete’,Cement & Concrete Composites 19 (4) (1997) 307–313.

    Article  MathSciNet  Google Scholar 

  25. Mehta, P.K. and Gjørv, O.E., ‘Properties of portland cement concrete containing fly ash and condensed silica fume’,Cement and Concrete Research 12 (5) (1982) 587–595.

    Article  Google Scholar 

  26. Ozyildirim, C. and Halstead, W.J., ‘Improved concrete quality with combination of fly ash and silica fume’,ACI Materials Journal 91 (6) (1994) 587–594.

    Google Scholar 

  27. Mitsui, K., Li, Z., Lange, D.A. and Shah, S.P., ‘Relationship between microstructure and mechanical properties of the pasteaggregate interface’,ACI Materials Journal 91 (1) (1994) 30–39.

    Google Scholar 

  28. Balaguru, P. and Dispia, M.G., ‘Properties of fiber reinforced high-strength semilightweight concrete’,ACI Materials Journal 90 (5) (1993) 399–405.

    Google Scholar 

  29. Wiens, U., Breit, W. and Schiessl, P., ‘Influence of high silica fume and high fly ash contents on alkalinity of pore solution and protection of steel against corrosion’, In: ‘Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete’, ACI SP-153, (Malhotra, V.M., ed., 1995) 741–761 American Concrete Institute, Milwaukee, Wisconsin, USA.

    Google Scholar 

  30. Sellevold, E.J., Bager, D.H., Klitgaard Jensen, E. and Knudsen, T., ‘Silica fume-cement pastes; hydration and pore structure’, The Norwegian Institute of Technology, NTH, Division of Building Materials, Trondheim, Norway (1982) 19–50.

    Google Scholar 

  31. Zhang, M.H. and Gjørv, O.E., ‘Effect of silica fume on cement hydration in low porosity cement pastes’,Cement & Concrete Research 21 (5) (1991) 800–808.

    Article  Google Scholar 

  32. Page, C.L., ‘Mechanism of corrosion protection in reinforced concrete marine structures’,Nature 258 (5535) (1975) 514–515.

    Article  Google Scholar 

  33. Kayyali, O.A., ‘Effects of Freezing and Thawing on the Microstructure and Strength of Portland Cement Paste’, PhD Thesis, Department of Civil Engineering, Strathclyde, Glasgow (1977) 223p.

    Google Scholar 

  34. Monteiro, P.J.M., Gjørv, O.E. and Mehta, P.K., ‘Microstructure of the steel-cement paste interface in the presence of chloride’,Cement & Concrete Research 15 (5) (1985) 781–784.

    Article  Google Scholar 

  35. Yue, L. and Shuguang, H., ‘The microstructure of the interfacial transition zone between steel and cement paste’,Cement & Concrete Research 31 (3) (2001) 385–388.

    Article  Google Scholar 

  36. Goldman, A. and Bentur, A., ‘Bond effects on high-strength silica-fume concretes’,ACI Materials Journal 86 (5) (1989) 440–447.

    Google Scholar 

  37. Gjørv, O.E., Monteiro, P.J.M. and Mehta, P.K., ‘Effect of condensed silica fume on the steel-concrete bond’,ACI Materials Journal 87 (6) (1990) 573–580.

    Google Scholar 

  38. Khayat, K.H. and Hester, W.T., ‘Evaluation of concrete mixtures for underwater pile repairs’,Cement, Concrete and Aggregates 13 (1) (1991) 32–41.

    Article  Google Scholar 

  39. Kuroda, M., Watanabe, T. and Terashi, N., ‘Increase of bond strength at interfacial transition zone by the use of fly ash’,Cement and Concrete Research 30 (2) (2000) 253–258.

    Article  Google Scholar 

  40. Jiang, L., ‘The interfacial zone and bond strength between aggregates and cement pastes incorporating high volumes of fly ash’,Cement and Concrete Composites 21 (4) (1999) 313–316.

    Article  Google Scholar 

  41. Sandvik, M. and Gjørv, O.E., ‘Effect of condensed silica fume on the strength development of concrete’, in ‘Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete’, Publication SP-91, American Concrete Institute Vol. 2, (1986) 893–901.

  42. Monteiro, P.J.M., Gjørv, O.E. and Mehta, P.K., ‘Effect of condensed silica fume on the steel-cement paste transition zone’,Cement and Concrete Research 19 (1) (1989) 114–123.

    Article  Google Scholar 

  43. Eren, O. and Çelik, T., ‘Effect of silica fume and steel fibers on some properties of high strength concrete’,Construction and Building Materials 11 (7–8) (1997) 373–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayali, O. Effect of high volume fly ash on mechanical properties of fiber reinforced concrete. Mat. Struct. 37, 318–327 (2004). https://doi.org/10.1007/BF02481678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481678

Keywords

Navigation