Skip to main content
Log in

Modeling and complexity in neural networks

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this paper, we study nonlinear spatio-temporal dynamics in synchronous and asynchronous chaotic neural networks from the viewpoint of the modeling and complexity of the dynamic brain. First, the possible roles and functions of spatio-temporal neurochaos are considered with a model of synchronous chaotic neural networks composed of a neuron model with a chaotic map. Second, deterministic point-process dynamics with spikes of action potentials is demonstrated with a biologically more plausible model of asynchronous chaotic neural networks. Last, the possibilities of inventing a new brain-type of computing system are discussed on the basis of these models of chaotic neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aihara K (ed) (1994) Applied chaos and applicable chaos (in Japanese) Science-sha, Tokyo

    Google Scholar 

  2. Aihara K, Katayama R (1995) Chaos engineering in Japan. Commun ACM 38(11):103–107.

    Article  Google Scholar 

  3. Aihara K, Katayama R (eds) (1997) A special issue on chaos engineering. J Intell Fuzzy Syst 5(1)

  4. Grebogi C, Yorke JA (eds) (1997) The impact of chaos on science and society United Nations University Press, Tokyo

    Google Scholar 

  5. M. Yamaguti (ed) (1994) Towards the harnessing of chaos, Elsevier Amsterdam

    Google Scholar 

  6. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in neural nets. Bull Math Biophys 5:115–133

    Article  MATH  MathSciNet  Google Scholar 

  7. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    Google Scholar 

  8. Aihara K (1988) Neural computers (in Japanese). Tokyo Denki University Press, Tokyo

    Google Scholar 

  9. Aihara K (1990) Chaotic neural networks. In: Kawakami H (ed) Bifurcation phenomena in nonlinear systems and theory of dynamical systems, World Scientific, Singapore, pp 143–161

    Google Scholar 

  10. Aihara K (ed) (1993) Chaos in neural systems (in Japanese). Tokyo Denki University Press, Tokyo

    Google Scholar 

  11. Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and nonperiodic responses of a periodically forced Hodgkin-Huxley oscillator. J Theor Biol 109:249–269

    Article  MathSciNet  Google Scholar 

  12. Aihara K, Matsumoto G (1986) Chaotic oscillations and bifurcations in squid giant axons. In: Holden AV (ed) Chaos, Manchester University Press, Manchester, and Princeton University Press, Princeton, pp 257–269.

    Google Scholar 

  13. Aihara K, Numajiri T, Matsumoto G et al. (1986) Structures of attractors in periodically forced neural oscillators. Phys Lett A 116:313–317

    Article  MathSciNet  Google Scholar 

  14. Matsumoto G, Aihara K, Hanyu Y et al. (1987) Chaos and phase locking in normal squid axons. Phys Lett A 123:162–166

    Article  Google Scholar 

  15. Matsumoto G, Aihara K, Ichikawa M et al. (1984) Periodic and nonperiodic responses of membrane potentials in squid giant axons during sinusoidal current stimulation. J Theor Neurobiol 3:1–14

    Google Scholar 

  16. Aihara K (ed) (1993) Neural, fuzzy and chaotic computing-introduction to a new generation of analog computing (in Japanese). Ohm-sha, Tokyo

    Google Scholar 

  17. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144 6(7):333–340

    Article  MathSciNet  Google Scholar 

  18. Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel Distributed Processing, MIT Press, Cambridge

    Google Scholar 

  19. Hopfield JJ, Tank DW (1985) ‘Neural” computation of decisions in optimization problems, Biol Cybern 52:141–152

    MATH  MathSciNet  Google Scholar 

  20. Adachi M, Aihara K (1997) Associative dynamics in a chaotic neural network, Neural Networks 10(1):83–98

    Article  Google Scholar 

  21. Chen L, Aihara K (1995) Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks 8(6):915–930

    Article  Google Scholar 

  22. Chen L, Aihara K (1997) Chaos and asymptotical stability in discrete-time neural networks, Physica D 104:286–325.

    Article  MATH  MathSciNet  Google Scholar 

  23. Tokuda I, Aihara K, Nagashima T (1997) Global bifurcation structure of chaotic neural networks and its application to traveling salesman problems, Neural Networks 10(9):1673–1690

    Article  Google Scholar 

  24. Yamada T, Aihara K (1997) Nonlinear neurodynamics and combinatorial optimization in chaotic neural networks. J Intell Fuzzy Syst 5(1):53–68

    Google Scholar 

  25. Watanabe M, Aihara K, Kondo S (1995) Automatic learning in chaotic neural networks. Trans IEICE J78-A(6):686–691

    Google Scholar 

  26. Watanabe M, Aihara K, Kondo S (1997) Self-organization dynamics in chaotic neural networks. In: Judd K et al. (eds) control and chaos. Birkhäuser, Boston, pp 320–333

    Google Scholar 

  27. Freeman WJ (1992) Tutorial on neurobiology-from single neurons to brain chaos. Int J Bifurcation Chaos 2(3):451–481

    Article  MATH  MathSciNet  Google Scholar 

  28. Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  29. Ichinose N, Aihara K (1994) Asynchronous chaotic neural networks. In: Yamaguti M (ed) Towards the harnessing of chaos. Elsevier, Amsterdam, pp 353–356

    Google Scholar 

  30. Ichinose N, Aihara K (1995) An analysis on pulse propagation dynamics in asynchronous chaotic neural networks. Trans IEICE J78-A(3):373–380 (in Japanese); English-language translation, Electronics and communications in Japan, Part 3, 78(11):52–59, Scripta Technical, John Wiley, New York

    Google Scholar 

  31. Judd K, Aihara K (1993) Pulse propagation networks: a neural network model that uses temporal coding by action potentials. Neural Networks 6(2):203–215

    Article  Google Scholar 

  32. Maass W (1995) On the computational complexity of networks of spiking neurons. In: Tesauro G, Tourctzky D, Leens T (eds) Adv Neural Inf Process Syst 7:185–190

  33. Abeles M (1982) Role of the cortical neuron: integrator or coincidence detector? Israel J Med Sci 18:83–92

    Google Scholar 

  34. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random ESPS. J Neurosci 13:334–350

    Google Scholar 

  35. Diez-Martinez O, Segundo JP (1983) Behavior of a single neuron in a recurrent excitatory loop. Biol Cybern 47:33–41

    Article  Google Scholar 

  36. Pakdaman K, Vibert JF, Boussard E et al. (1996) Single neuron with recurrent excitation: effect of the transmission delay. Neural Networks 9(5):797–818

    Article  Google Scholar 

  37. Fujii H, Ito H, Aihara K et al. (1996) Dynamical cell assembly hypothesis-theoretical possibility of spatio-temporal coding in the cortex. Neural Networks 9(8):1303–1350

    Article  MATH  Google Scholar 

  38. Watanabe M, Aihara K (1997) Chaos in neural networks composed of coincidence detector neurons. Neural Networks 10(8):1353–1359

    Article  Google Scholar 

  39. Watanabe M, Aihara K, Kondo S (1998) A dynamical neural network with temporal coding and functional connectivity. Biol Cybern 78:87–93

    Article  Google Scholar 

  40. Aihara K (1998) Forced chaos in nerve membranes and its modeling and application to chaotic parallel distributed processing. Proceedings on Chaos Memorial Symposium in Asuka, in press

  41. Shimizu K, Aihara K, Kotani M (1991) An electronics circuit model of chaotic neural networks. Electronics and Communications in Japan, Part 3, 74(1):51–64 Scripta Technica, John Wiley, New York

    Google Scholar 

  42. Kanou N, Horio Y, Aihara K et al. (1993) A current-mode circuit of a chaotic neuron model. Trans IEICE E76-A (4):642–644

    Google Scholar 

  43. Horio Y, Suyama K, Dec A et al. (1994) Switched-capacitor chaotic neural networks for traveling salesman problem. Proc WCNN94 4, pp 690–696

    Google Scholar 

  44. Horio Y, Suyama K (1995) Experimental observations of 2- and 3-neuron chaotic neural networks using switched-chapacitor chaotic neuron IC chip. Trans IEICE E78-A(4):529–535

    Google Scholar 

  45. Horio Y, Aihara K (1997) Chaotic neural network integrated circuit (in Japanese) Seitai no kagaku 48(1):67–71

    Google Scholar 

  46. Nanya T (1995) Survey on asynchronous VLSI system design techniques (in Japanese). Future Electron Devices J 6(3):11–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Aihara.

About this article

Cite this article

Aihara, K., Ichinose, N. Modeling and complexity in neural networks. Artif Life Robotics 3, 148–154 (1999). https://doi.org/10.1007/BF02481131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481131

Key words

Navigation