Skip to main content
Log in

Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Numerous strategies have been advocated to reduce the potential for plastic shrinkage cracking in concrete through mixture proportioning, curing methods, or the use of fiber reinforcement. The effectiveness of each approach must be adequately quantified to determine whether the additional initial cost of each strategy is justified. The majority of current research to characterize plastic shrinkage cracking in concrete relies on manual crack observation and measurement that is typically only performed at select locations. These manual measurements of crack width may provide only limited information and may be subject to operator bias. This paper describes a systematic methodology that uses a semi-automated image analysis approach to accurately quantify the salient features of the plastic shrinkage crack patterns. A restrained slab specimen with a stress riser was used to amplify the potential for plastic shrinkage cracking. The specimens described in this paper were exposed to an accelerated drying environment for the first 6 hours after casting. At an age of 24 hours, the crack was assessed using a series of thirteen gray level images that were acquired along the crack path. Crack contours were extracted from these images using gray level intensity thresholding to create binary images. Subtracting the binary image from a uniformly spaced grid enabled the crack width to be determined at numerous locations. This image analysis technique permits the crack widths to be assessed rapidly at numerous locations without operator bias. The measured crack widths were statistically analyzed using a modified Weibull distribution function. This enabled the crack width distribution to be fully described using only two or three parameters. It is anticipated that this approach can be used to better quantify the effects of short randomly distributed fiber reinforcement on plastic shrinkage crack formation.

Résumé

De nombreuses stratégies ont été préconisées en vue de réduire le potentiel de fissuration de retrait plastique dans le béton, en agissant sur le dosage, les méthodes de cure, ou en utilisant le renforcement par fibres. L'efficacité de chacune de ces approches doit être quantifiée avec soin, afin de déterminer si le coût supplémentaire induit est justifié. La plupart des recherches actuelles pour caractériser la fissuration de retrait plastique dans le béton reposent sur l'observation et la mesure manuelles des fissures effectuées, typiquement, à des endroits prédéterminés. Ces mesures manuelles fournissent des informations limitées et sont sujettes à une erreur systématique (biais) due à l'opérateur. Cet article décrit une méthodologie systématique où les caractéristiques géométriques essentielles de la fissuration de retrait plastique sont observées par traitement d'images semi-automatique. Un échantillon confiné de plaque a été utilisé avec un coin de contrainte afin d'amplifier le potentiel de fissuration de retrait plastique. Les spécimens décrits dans cet article ont été soumis à un séchage accéléré pendant les six premières heures après moulage. Après 24 heures, la fissuration a été observée sur une série de 13 images en nuances de gris, le long de la fissure. Les contours de fissures ont été extraits de ces images en digitalisant les intensités de gris. Puis, en superposant l'image binaire à une grille uniforme, on a pu déterminer la largeur de fissure à un grand nombre d'endroits. Cette technique d'analyse d'image permet de déterminer la largeur des fissures rapidement à de nombreux endroits et sans le biais de l'opératuer. Les largeurs de fissures mesurées ainsi sont analysées statistiquement au moyen, soit d'une distribution standard de Weibull, soit d'une distribution modifiée de Weibull. Cela permet de décrire la distribution des largeurs de fissures par seulement deux ou trois paramètres. On espère que cette approche pourra être utilisée pour mieux quantifier les effets, sur la formation des fissures de retrait, des renforcement par fibres courtes distribuées de manière aléatoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkaya, Y., Picka, J. and Shah, S.P., ‘Spatial distribution of aligned short fibers in cement composites’,Journal of Materials In Civil Engineering 12, (Aug. 2000) 272–279.

    Article  Google Scholar 

  2. Ammouche, A., Riss, J., Breysse, D. and Marchand, J., ‘Image analysis for the automated study of microcracks in concrete’, Cement & Concrete Composites23 (Jun. 2001) 267–278.

    Article  Google Scholar 

  3. Aristaghes, P. and Guimbal, F., ‘Preventing and controlling early-age cracking: a key point towards enhancement of structure durability’, Proceedings of the Sixth International Conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials (Concreep-6), 20–22 Aug, Cambridge, MA, USA, 657–662; Elsevier 2001©, Edited by Ulm, F-J. Bažant, Z.P. and Wittmann, F.H., 301–306.

  4. Balaguru, P. and Shah, S.P., ‘Fiber Reinforced Cement Composites’, (McGraw-Hill, New York, 1992) 535 pp.

    Google Scholar 

  5. Balaguru, P., ‘Contribution of fibers to crack reduction of cement composites during the initial and final setting period’,ACI Mat. J. (May–June 1994) 280–288.

  6. Banthia, N., Yan, C. and Mindess, S., ‘Restrained shrinkage cracking in fiber reinforced concrete: a novel test technique’,Cement and Concrete Research 26 (Jan. 1996) 9–14.

    Article  Google Scholar 

  7. Banthia, N. and Yan, C., ‘Shrinkage cracking in polyolefin fiber-reinforced concrete’,ACI Mat. J., (July–Aug. 2000) 432–437.

  8. Basheer, P.A.M., Basheer, L., Lange, D.A. and Long, A.E., ‘Role of thresholding to determine size of interfacial transition zone’, High-Performance Concrete: From Research to Practice, ACI SP-189-11 (2000) 165–186.

  9. Berke, N.S. and Dalliare, M.P., ‘The effect of low addition rate of polypropylene fibers on plastic shrinkage cracking and mechanical properties of concrete’, Fiber reinforced concrete: development and innovations, ACI SP-142-2 (1994) 19–41.

  10. Chermant, J-L., ‘Why automatic image analysis? An introduction to this issue’,Cement and Concrete Composites 23 (April–June 2001) 127–131.

    Article  Google Scholar 

  11. Choi, S. and Shah, S.P., ‘Measurement of deformations on concrete subjected to compression using image correlation’,Experimental Mechanics 37 (Sep. 1997) 307–313.

    Article  Google Scholar 

  12. Cohen, M.D., Olek, J. and Dolch, W.L., ‘Mechanism of plastic shrinkage cracking in portland-cement and portland cement-silica fume paste and mortar’,Cement and Concrete Research 20 (Jan. 1990) 103–119.

    Article  Google Scholar 

  13. Diamond, S. and Bonen, D., ‘A re-evaluation of hardened cement paste microstructure based on backscattered SEM investigations’, Materials Research Society Symposium Proceedings, Vol. 370 (1995) 13–22, Edited by Diamond, S., Mindess, S., Glasser, F.P., Roberts, L.W., Skalny, J.P. and Wakeley, L.D., Pittsburgh, PA.

  14. Francois, R. and Maso, J.C., ‘Effect of damage in reinforced-concrete on carbonation or chloride penetration’,Cement and Concrete Research 18 (Nov. 1988) 961–970.

    Article  Google Scholar 

  15. Grzybowski, M. and Shah, S.P., ‘Shrinkage cracking of fiber reinforced concrete’,ACI Mat. J. (Mar–Apr. 1990) 138–148.

  16. Hammer, T.A., ‘Cracking in high performance concrete before setting’, International symposium on high performance and reactive powder concretes, 16–20 Aug. 1998, Sherbrooke, Canada 332–348.

  17. Hannant, D.J., ‘Fibre Cements and Fibre Concretes’, (Chichester, U.K., John Wiley & Sons, 1978) 219 pp.

    Google Scholar 

  18. Johansen, R. and Dahl, P. A., ‘Control of plastic shrinkage in concrete at early ages’, 18th Conference on Our World in Concrete & Structures: 25–27 Aug. 1993, Singapore, pp. 149–154.

  19. Kraai, P.P., ‘Proposed test to determine the cracking potential due to drying shrinkage of concrete’,Concrete Construction 30 (Sept. 1985) 775–778.

    Google Scholar 

  20. Lawler, J.S., Keane, D.T. and Shah, S.P., ‘Measuring three-dimensional damage in concrete under compression’,ACI Mat. J. 98 (Nov.–Dec. 2001) 465–475.

    Google Scholar 

  21. Mindess, S. and Diamond, S., ‘A preliminary SEM study of crack-propagation in mortar’,Cement and Concrete Research 10 (1980) 509–519.

    Article  Google Scholar 

  22. Mora, J., Gettu, R., Olazábal, C., Martín, M.A. and Aguado, A.A., ‘Effect of the incorporation of fibers on the plastic shrinkage of concrete,’ Fiber-Reinforced Concretes (FRC), BEFIB'2000 (Lyon, France), Edited by Rossi, P. and Chanvillard, G., RILEM Publications S.A.R.L., France, (2000) 705–714.

    Google Scholar 

  23. Nanni, A., Ludwig, D.A. and Mcgillis, M.T., ‘Plastic shrinkage cracking of restrained fiber-reinforced concrete’, Transportation Research Record 1382 (1993) 69–72.

    Google Scholar 

  24. Powers, T.C., ‘The Prosperities of Fresh Concrete’, (John Wiley & Sons, Inc., New York, 1968) 664 pp.

    Google Scholar 

  25. Qi, C.Q., ‘Quantitative assessment of plastic shrinkage cracking and its impact on the corrosion of steel reinforcement’, Ph.D. thesis, Purdue University, 166 p., May 2003.

  26. Radocea, A., ‘A new method for studying bleeding of cement paste’,Cement and concrete research 22 (5) (1990) 855–865.

    Article  Google Scholar 

  27. Ramakrishnan, V., ‘Concrete plastic shrinkage reduction potential of synergy fibers’, Symposium of the 80th Annual Transportation Research Board Meeting, Washington, D.C., Jan. 7–11 2001, CD-ROM.

  28. Schaeles, C.A. and Hover, K.C., ‘Influence of mix proportions and construction operations on plastic shrinkage cracking in thin slabs’,ACI Material Journal 85 (Nov–Dec 1988) 495–504.

    Google Scholar 

  29. Schießl, P. and Raupach, M., ‘Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete’ACI Mat. J. 94 (Jan.–Feb. 1997) 56–61.

    Google Scholar 

  30. Soroushian, P., Mirza, F. and Alhozaimy, A., ‘Plastic shrinkage cracking of polypropylene fiber-reinforced concrete’,ACI Materials Journal 92 (Sep.–Oct. 1995) 553–560.

    Google Scholar 

  31. Soroushian, P., Mirza, F. and Alhozaimy, A., ‘Plastic shrinkage cracking of polypropylene fiber-reinforced concrete slabs’, Transportation Research Record, 1382 (1993) 69–72.

    Google Scholar 

  32. Wang, K., Jansen, D. and Shah, S.P., ‘Permeability of cracked concrete’,Cement and Concrete Research 27 (1997) 409–415.

    Google Scholar 

  33. Wang, K.J., Shah, S.P. and Phuaksuk, P., ‘Plastic shrinkage cracking in concrete materials-Influence of fly ash and fibers’,ACI Mat. J. 98 (Nov.–Dec. 2001) 458–464.

    Google Scholar 

  34. Weiss, W.J., Yang, W. and Shah, S.P., ‘Factors influencing durability and early-age cracking in high-strength concrete structures’, ACI-SP 189, ACI SP-189-22 (2001) 387–409.

  35. Weyers, R.E., Conway, J.C. and Cady, P.D., ‘Photoelastic analysis of rigid inclusions in fresh concrete’,Cement and Concrete Research 12 (1982) 475–484.

    Article  Google Scholar 

  36. Wittmann, F.H., ‘On the action of capillary pressure in fresh concrete’,Cement and Concrete Research 6 (Jan. 1976) 49–56.

    Article  Google Scholar 

  37. Yoon, S., Wang, K.J., Weiss, W.J. and Shah, S.P., ‘Interaction between loading, corrosion, and serviceability of reinforced concrete’,ACI Materials J. 97 (Nov.–Dec. 2000) 637–644.

    Google Scholar 

  38. ACI Committee 224, ‘Control of Cracking in Concrete Structures’, Report ACI 224R-90, ACI Manual of Concrete Practice, Section Vol. 2 (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. W. Jason Weiss is a RILEM Senior Member. Prof. Jan Olek is also a RILEM Senior Member. He participates in the work of RILEM TC 186-ISA: ‘Internal sulfate attack’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, C., Weiss, J. & Olek, J. Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function. Mat. Struct. 36, 386–395 (2003). https://doi.org/10.1007/BF02481064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481064

Keywords

Navigation