Skip to main content
Log in

Scaling behaviour and dual renormalization of experimental tensile softening responses

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The aim of the present paper is to investigate the scaling behaviour of the experimental tensile softening (or catastrophic) curves and it concludes a series of papers from the same research group published inMaterials and Structures [1–4]. Experimentally, it is evident how these curves become steeper by increasing the size of the specimens (ductile-to-brittle transition). To study this phenomenon, a completely new testing apparatus, made up of three orthogonally placed actuators, was bult at the Politecnico di Torino by the authors [1, 5–7]. This set-up makes it possible to apply a purely tensile force, so that the secondary flexural stresses, if kept under control, constitute a degree of error comparable to the values allowed for normal testing apparatus. The method enables a stress vs. strain curve to be plotted with the descending (softening) branch up to the point where the cross section of the tensile specimen breaks away. The results of a new experimental investigation, performed over a very large scale-range of unnotched concrete specimens (16∶1), will be presented. Particular attention will be paid to the scale effects both on nominal tensile strength and on fracture energy. The renormalized experimental curves will be presented in a load vs. displacement plane characterized by anomalous physical dimensions. The renormalization of experimental curves enables obtaining the same response for all specimen dimensions, and then defining the universal (scale-independent) behaviour of the material.

Résumé

Cet article étudie les effets d’échelle sur le comportement des courbes expérimentales de radoucissement à la traction (ou catastrophiques); il conclut une série d’articles publiés dansMatériaux et Constructions par la même équipe de recherche [1–4]. Les expériences démontrent de façon évidente que ces courbes deviennent plus raides en fonction de l’augmentation de la taille des éprouvettes, montrant la transition de la ductilité à la fragilité. Afin d’étudier ce phénomène, un appareil d’essai innovant, composé de trois dispositifs de commande placés orthogonalement, a été construit par les auteurs à la Politecnico di Torino [1, 5–7]. Cet appareil permet d’appliquer une force de traction pure, afin que les contraintes de flexion secondaires, à condition d’être sous contrôle, constituent un degré d’erreur comparable aux valeurs permises pour un appareil d’essai classique. Cette méthode permet de déterminer une courbe contrainte/déformation ayant une branche déroissante (radoucissement) jusqu’au point ou les parties de l’éprouvette en traction se séparent. On présente les résultats d’une nouvelle étude expérimentale, menée sur une gamme d’éprouvettes de béton non-entaillé de dimensions variées (16∶1). Une attention particulière est accordée aux effets d’échelle sur la résistance à la traction nominale et à l’énergie de rupture. Les courbes expérimentales normalisées sont présentées sur un plan charge/déplacement caractérisé par des dimensions physiques anormales. La normalisation des courbes expérimentales permet d’obtenir la même réponse pour toutes les dimensions des éprouvettes, et de définir ensuite le comportement universel (indépendant de l’échelle) du matériau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpinteri, A. and Ferro G., ‘Size effect on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure’,Mater. Struct. 27 (1994) 563–571.

    Article  Google Scholar 

  2. Carpinteri, A., Chiaia, B. and Ferro, G., ‘Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder’,Ibid. 28 (180) (1995) 311–317.

    Article  Google Scholar 

  3. Carpinteri, A. and Chiaia, B., ‘Multifractal nature of concrete fracture and size effects on nominal fracture energy’,Ibid. 28 (182) (1995) 435–443.

    Article  Google Scholar 

  4. Carpinteri, A. and Chiaia, B., ‘Size effects on concrete fracture energy: dimensional transition from order to disorder’,Ibid. 29 (1996) 259–266.

    Google Scholar 

  5. Carpinteri, A. and Ferro, G., ‘Apparent tensile strength and fictitious fracture energy of concrete: a fractal geometry approach to related size effects’, in ‘Fracture and Damage of Concrete and Rock’ (FDCR-2), Ed. H.P. Rossmanith, (Chapman & Hall/E&FN Sporn, London, 1993) 86–94.

    Google Scholar 

  6. Carpinteri, A. and Maradei, F., ‘Three-jack solution to obtain a truly stable and symmetric tensile concrete test’,Experimental Mechanics 35 (1995), 19–23.

    Article  Google Scholar 

  7. Ferro, G. ‘Effetti di scala sulla resistenza a trazione dei materiali’, Ph.D. Thesis. Politecnico di Torino, Torino, 1994.

    Google Scholar 

  8. Rusch, H. and Hilsdorf, H.K., ‘Deformation characteristics of concrete under axial tension’,Voruntersuchungen, Bericht 44 (Münich 1963).

  9. Hughes, B.P. and Chapman, G.P., ‘The complete stress-strain curves for concrete in direct tension’,Bulletin RILEM (30) (1966) 95–97.

    Google Scholar 

  10. Evans, R.H. and Marathe, M.S., ‘Microcracking and stressstrain curves for concrete in tension’,Mater. Struct. 1 (1968) 61–64.

    Google Scholar 

  11. Heilmann, H.G., Hilsdorf, H.K. and Finsterwalder, K., ‘Festigkeit und Verformung von Beton unter Zugspannungen’,Deutscher Ausschuss für Stahlbeton Heft 203 (1969).

  12. Petersson, P.E., ‘Crack growth and development of fracture zones in plain concrete and similar materials’, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology (1981).

  13. Gopalaratnam, V.S. and Shah, S.P., ‘Softening response of plain concrete in direct tension’,J. ACI 82 (1985) 310–323.

    Google Scholar 

  14. Reinhardt, H. W., Cornelissen, A. W. and Hordijk, D. A., ‘Tensile tests and failure analysis of concrete’,J. Struct. Eng. 112 (1986) 2462–2477.

    Article  Google Scholar 

  15. Phillips, D. V. and Zhang, B., ‘Fracture energy and brittleness of plain concrete specimens under direct tension’, in ‘Fracture Behaviour and Design of Materials and Structures’, Ed. D. Firrao, Proceedings of the 8th European Conference on Fracture, Torino, Italia, October, 1990 (EMAS, Warley, 1991) 646–652.

    Google Scholar 

  16. Bažant, Z.P. and Pfeiffer, P.A., ‘Determination of fracture energy from size effect and brittleness number’,ACI Material Journal (November–December 1987) 463–480.

  17. Nooru-Mohamed, M.B. and van Mier, J.G.M., ‘Size effect in mixed mode fracture of concrete’, in ‘Fracture Processes in Concrete, Rock and Ceramics’, Eds. J.G.M. van Mier, J.G. Rots and A. Bakker, (E. & F.N. Spon, 1991) 461–471.

  18. Slowik, V., Saouma, V.E. and Thompson A., ‘Large scale direct tension test of concrete’,Cement and Concrete Research 26 (6) (1996) 949–954.

    Article  Google Scholar 

  19. Carpinteri, A., ‘Scaling laws and renormalization groups for strength and toughness of disordered materials’,International Journal of Solids and Structures 31 (1994) 291–302.

    Article  MATH  Google Scholar 

  20. Carpinteri, A., Chiaia, B. and Ferro, G., ‘Multifractal scaling law for nominal strength variation of concrete structures’, in ‘Size Effect in Concrete Structures’, Eds. H. Mihashi, H. Okamura and Z.P. Bažant, (E. & F.N. Spon, London, 1994) 193–206.

    Google Scholar 

  21. Carpinteri, A., Chiaia, B. and Ferro, G., ‘Multifractal nature of material microstructure and size effect on nominal tensile strength’, in ‘Fracture of Brittle Disordered Materials: Concrete, Rocks, Ceramics’, Eds. G. Baker and B.L. Karihaloo, (E. & F.N. Spon, London, 1995) 21–34.

    Google Scholar 

  22. Vervuurt, A., Schlangen, E. and Van Mier, J.G.M., ‘Tensile cracking in concrete and sandstone: part 1—basic instruments’,Mater. Struct. 29 (1996) 9–18.

    Google Scholar 

  23. Van Mier, J.G.M., Schlangen, E. and Vervuurt, A., ‘Tensile cracking in concrete and sandstone: part 2—effect of boundary rotations’,Ibid. 29 (1996) 87–96.

    Google Scholar 

  24. Carpinteri, A., ‘Fractal nature of material microstructure and size effects on apparent mechanical properties’,Mechanics of Materials 18 (1994) 89–101.

    Article  Google Scholar 

  25. de Arcangelis, L., ‘Randomness in breaking thresholds’, in ‘Statistical Models for the Fracture of Disordered Media’, Ed. H.J. Herrmann and S. Roux, (Elsevier Science Publishers, B.V. North Holland, 1990) 229–260.

    Google Scholar 

  26. Carpinteri, A., Chiaia, B. and Ferro, G., ‘Multifractal Scaling Law: an extensive application to nominal strength size effect of concrete structures’,Atti del Dipartimento di Ingegneria Strutturale del Politecnico di Torino 51, Torino (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note: Prof. Alberto Carpinteri is a RILEM Senior Member. He is a member of the Editorial Group of RILEM Technical Committee 090-FMA (Fracture Mechanics of Concrete) and is involved in the work of TCs 147-FMB (Fracture Mechanics Applications to Anchorage and Bond), 148-SSC (Test Methods for the Strain Softening Response in Concrete) and QFS (Size Effect and Scaling of Quasibrittle Fracture). Prof. Carpinteri was awarded the Robert l’Hermite Medal in 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Ferro, G. Scaling behaviour and dual renormalization of experimental tensile softening responses. Mat. Struct. 31, 303–309 (1998). https://doi.org/10.1007/BF02480671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480671

Keywords

Navigation