Skip to main content
Log in

Assessment of microcrack development in concrete materials of different strengths

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Comprehensive microstructural investigations were performed on normal-strength (33 MPa) and relatively high-strength concrete (43 MPa) as well as concrete specimens with and without restraint against drying shrinkage movement. The effects of different load and environmental damaging phenomena (cold and hot environment) on concrete microcrack system were detected. Fluorescent and environmental scanning electron microscopy (ESEM) techniques with image analysis methodologies were employed to quantify microcrack attributes on planar sections. Stereological aspects were used to derive information on spatial (3-D) microcrack systems in terms of planar (2-D) quantitative data generated on perpendicular sections. Statistical analysis of data was used to determine the differences in microcrack characteristics between normal-strength versus relatively high-strength and unrestrained versus restrained specimens.

Résumé

Des investigations complètes ont été exécutées au plan microstructurel sur du béton ordinaire (33 MPa) et sur du béton à performances relativement hautes (43 MPa), ainsi que sur des éprouvettes avec et sans contraintes agissant sur le mouvement de retrait au séchage. Les effets de différents phénomènes d'endommagement sous chargement ou environnemental (environnement froid et chaud) sur le système de microfissuration du béton ont été détectés. Des techniques de microscopie électronique à balayage fluorescent et environnemental (ESEM) ont été employées avec les méthodologies d'analyse d'images pour quantifier les attributs des microfissures sur les sections planaires. Les aspects stéréologiques ont été utilisés pour obtenir des informations sur les systèmes de microfissuration spatiale (3-D) en termes de données quantitatives planaires (2-D) générées sur des sections perpendiculaires. L'analyse statistique de ces données a été utilisée pour déterminer les différences de caractéristiques des microfissures entre béton ordinaire et béton à performances relativement hautes, et éprouvettes avec et sans contraintes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAC1 :

Crack area fraction on the first (horizontal-perpendicular to the direction of loading) section

AAC2 :

Crack area fraction on the second (vertical-parallel to the direction of loading) section

AiC :

Area of each individual crack

Aicm :

Mean of the area of each individual crack in the section of interest

LAC1 :

Crack length per unit area of the first (horizontal-perpendicular to the direction of loading) section

LAC2 :

Crack length per unit area of the second (vertical-parallel to the direction of loading) section

LiC :

Length of each individual crack

WCP1 :

Crack width in plane in the first (horizontal-perpendicular to the direction of loading) section

WCP2 :

Crack width in plane in the second (vertical-parallel to the direction of loading) section

WiC :

Width of each individual crack

References

  1. Lin, W., Lin, T. and Couche-Powers, L., ‘Microstructure of Fire-Damaged Concrete’,ACI Materials Journal 93 (USA, 1996) 199–205.

    Google Scholar 

  2. Hall, C. and Bosbach, D., ‘Scanning probe microscopy: a new view of the mineral surface’, in ‘Material Science of Concrete VI’, edited by Mindess, S. and Skalny, J. (The American Ceramic Society, 2001) 101–128.

  3. Sakata, Y. and Ohtsu, M., ‘Crack evaluation in concrete members based on ultrasonic spectroscopy’,ACI Materials Journal 92 (USA, 1995) 686–698.

    Google Scholar 

  4. Ping, G., Zhongzi, X., Ping, X. and Beaudoin, J., ‘An A.C. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading’,Cement and Concrete Research 23 (USA, 1993) 675–682.

    Article  Google Scholar 

  5. Berliner, R., ‘Neutron diffraction and neutron scattering’, in ‘Material Science of Concrete VI’, edited by Mindess, S. and Skalny, J. (The American Ceramic Society, 2001) 49–99.

  6. Roode-Gutzmer, Q. and Ballim, Y., ‘Phase composition and quantitative X-ray powder diffraction analysis of Portland cement and clinker’, in ‘Material Science of Concrete VI’, edited by Mindess, S. and Skalny, J. (The American Ceramic Society, 2001) 1–48.

  7. Young, J., ‘The microstructure of hardened Portland cement paste’, in ‘Creep and Shrinkage in Concrete Structures’, edited by Bažant, Z.P. and Wittmann, F.H. (John Wiley & Sons Ltd, 1982) 3–22.

  8. Scrivener, K., ‘The microstructure of concrete’, in ‘Material Science of Concrete I’, edited by Skalny, J. (The American Ceramic Society, 1989) 127–161.

  9. Shayan, A. and Quick, G., ‘Microscopic features of cracked and uncracked concrete railway sleepers’,ACI Materials Journal 89 (USA, 1992) 348–361.

    Google Scholar 

  10. Beaudoin, Y., ‘Microcracking as a precursor to delayed ettringite formation in cement systems’,Cement and Concrete Research 26 (USA, 1996) 1493–1498.

    Article  Google Scholar 

  11. Tay, D. and Tam, C., ‘In situ investigation of the strength of deteriorated concrete’,Construction and Building Materials 10 (London, 1996) 17–26.

    Article  Google Scholar 

  12. Thomas, S. and Albert, B., ‘Alkali-silica reaction in marine piles,’Concrete International 19 (USA, 1997) 59–62.

    Google Scholar 

  13. Ringot, E., ‘Automatic quantification of microcracks network by stereological method of total projection in mortars and concretes’,Cement and Concrete Research 18 (USA, 1988) 35–43.

    Article  Google Scholar 

  14. Smadi, M. and Slate, F., ‘Microcracking of high and normal strength concrete under short-and long-term loadings’,ACI Materials Journal 86 (USA, 1989) 117–127.

    Google Scholar 

  15. Carrasquillo, R., Slate, F. and Nilson, A., ‘Microcracking and behavior of high strength concrete subject to short-term loading’,ACI Materials Journal 11 (USA, 1981) 179–186.

    Google Scholar 

  16. Ngab, A., State, F. and Nilson, A., ‘Microcracking and time-dependent strains in high strength concrete’,ACI Materials Journal 11 (USA, 1981) 262–268.

    Google Scholar 

  17. Emmanuel, K. and David, D., ‘Submicrocracking in cement paste and mortar’,ACI Materials Journal 84 (USA, 1987) 491–500.

    Google Scholar 

  18. Stang, H., Mobasher, B. and Shah, P., ‘Quantitative damage characterization in polypropylene fiber reinforced concrete’,Cement and Concrete Research 20 (USA, 1990) 540–558.

    Article  Google Scholar 

  19. Mobasher, B., Stang, H. and Shah, S.P., ‘Microcracking in fiber reinforced concrete’,Cement and Concrete Research 20 (USA, 1990) 665–676.

    Article  Google Scholar 

  20. Nemati, K., Monteiro, J. and Scrivener, K., ‘Analysis of compressive stress-induced cracks in concrete’,ACI Materials Journal 98 (USA, 1998) 617–630.

    Google Scholar 

  21. Underwood, E.E., ‘Quantitative Stereology’ (Addison-Wesley Publishing Company, 1970—New Jersey, 1968) 23, 48–105.

    Google Scholar 

  22. Weibel, R.W., ‘Stereological methods’: ‘Practical for biological morphometry’,Academic Press 2 (USA, 1979) 261–263 & 299–305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzafraney, M., Soroushian, P. Assessment of microcrack development in concrete materials of different strengths. Mat. Struct. 37, 724–731 (2004). https://doi.org/10.1007/BF02480518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480518

Keywords

Navigation