Skip to main content
Log in

Factors controlling cracking of concrete affected by reinforcement corrosion

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present paper tries to contribute to quantifying the relationship between the amount of corrosion and cover cracking. The variables studied were: cover/diameter (c/ø), proportions of cement, w/c, cast position of the bar, transverse reinforcement and corrosion rate. The corrosion is accelerated by applying constant currents causing the rebar to act as an anode. The results indicate that the cracking process develops in two steps: generation and propagation. Radius losses of about 15–50 μm are necessary to generate the first visible crack (<0.1 mm width). The propagation follows a behaviour of the type: w (crack width in mm)=a+bx (radius loss in μm).

Résumé

Ce travail tente de quantifier la relation entre le degré de corrosion et la fissuration du recouvrement de l'armature. Les variables étudiées ont été: recouvrement/diamètre (c/ø), dosage du ciment, eau/ciment, position de l'armature, armature transversale, et degré de corrosion. La corrosion est accélérée par l'application des courants constants qui font agir l'armature comme une anode. Les résultats indiquent que le processus de fissuration se développe en deux temps: génération et propagation. Une réduction du rayon de l'armature d'environ 15–50 μm est nécessaire pour produire la première fissure visible (ouverture <0.1 mm). À la propagation, le comportement suit l'expression: w (largeur de la fissure en mm) =a+bx (réduction du rayon en μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raman, A., Razvan, A., Kuban, B., Clement, K.A. and Gravesw, E., ‘Characteristics of the rust from weathering steels in Louisiana bridge spans’,Corrosion NACE 42 (8) (1986) 447–455.

    Google Scholar 

  2. Sagoe-Crentsil, K.K. and Glasser, F.P., ‘Analysis of the steel concrete interface’, 3rd Symp. Corrosion of Reinforcement in Concrete’, Edt. C.L. Pageet al. (Elsevier Applied Science, 1990) 74–96.

  3. Constantinou, A.G., Scrivener, K.L., Alonso, C. and Andrade, C., ‘The corrosion of steel in concrete subjected to chloride and carbon dioxide environment’, Conf. on Cement and Concrete Science, Oxford, Sept. 1992.

  4. Sanjuan, M.A., Alonso, C., Andrade, C. and Scrivener, K.L., ‘Estudio de la interfase acero-mortero en probetas expuestas a un medio salino’, 5° Congreso Iberoamericano de corrosión y protección Tenerife, Oct. 1995.

  5. Nielsen, A.. ‘Beskrivelse af enkorrosionsskade pa et svømmebassin (white, green and black rust)’,Nordisk Beton 2 (1976) 21–24.

    Google Scholar 

  6. Tomashov, N.D., ‘Theory of corrosion and protection of metals’, (Mac Milan Co, New York, 1966).

    Google Scholar 

  7. Pourbaix, M. and Zoubov, N., ‘The Iron’, Chapt. V, Sect 12.1 (1960) 307–319.

    Google Scholar 

  8. Evans, U.R., ‘The Corrosion and Oxidation of Metals’, (Ed. Arnald, London, 1960) 883.

    Google Scholar 

  9. Straumanis, M. E. and Davidson, A. W., ‘The Book of Electrochemistry’, (Ed. Hampel, Reinhol, New York, 1964) 44–48.

    Google Scholar 

  10. Braun, K., ‘Prediction and evaluation of durability of reinforced concrete elements and structures’, Proceedings of 4th Conference on Durability of Building Material and Components, Singapore, 1987, 383–388.

  11. Monsor-Emann, T.T., ‘Corrosion prevention for steel reinforcement of concrete’, Doctoral Thesis, El Cairo (1989).

  12. Browne, R.D., Geoghegan, M.P. and Baker, A.F., ‘Corrosion of reinforcement in concrete construction’, Ch. 13, A.P. Crane Ed. (SCI Publisher, London, 1983) 193–222.

    Google Scholar 

  13. Uomoto, T. and Misra, S. ‘Behaviour of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place’, ACI SP-109, Proceedings of 2nd International Conference on Concrete in Marine Environment, St. Andrews-by-the-Sea, Canada, 1988, 127–146.

  14. Sygula, S. and Riz, K., ‘Longitudinal cracking and its relation to service life of reinforced concrete bridges’, Proceedings of ACI-RILEM International Symposium on Long-term Observation of Concrete Structures, Budapest, 1984, 182–192.

  15. Müller, K.F., ‘The possibility of evolving a theory for predicting the service life of reinforced concrete structures’,Ibid., Proceedings of ACI-RILEM International Symposium on Long-term Observation of Concrete Structures, Budapest, 1984, 182–192. 9.

  16. Allan, M.L., and Cherry, B.W., ‘Factors controlling the amount of corrosion for cracking in reinforced concrete’, Proceedings of Corrosion 91, NACE, Cincinnati, USA, March, 1991, Paper 125.

  17. Okada, K., Kobayashi, K. and Miyagawa, T., ‘Influence of Longitudinal cracking due to reinforcement concrete members’,ACI Struct. J. (March–April 1988) 1134.

  18. Saeki, N., Fujita, Y., Takada, N. and Ohta, T., ‘Control of rust damage of reinforced concrete in corrosive environment’, ACI SP-109, Proceedings of 2nd International Conference on Concrete in Marine Environment, St. Andrews-by-the-Sea, Canada, 1988, 163–178.

  19. Ravindrarajah, R. and Ong, K., ‘Corrosion of steel in concrete in relation to bar diameter and cover thickness’, ACI-SP100-84 (1968).

  20. Rodriguez, J. and Andrade, C., ‘Load bearing capacity loss in corroding structures’, ACI Convention, Toronto, 1990.

    Google Scholar 

  21. Andrade, C., Alonso, C., González, J.A. and Rodríguez, J., ‘Remaining service life of corroded structures’, Proceedings of IABSE Symposium on Durability of Structures, Lisbon, September 1989, 359–363.

  22. Maslehuddin, M., Allam, I.M., Al-Sulaimai, G.J., Al-Mana, A.I. and Abduljauwad, S.N., ‘Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete’,ACI Materials Journal (1990) 496–502.

  23. Hwang, C.L., Lin, R.Y., Chen, J.C. and Kuo, J.H., ‘Crack patterns and measurement technique in reinforced concrete structures’, 2nd Int. Conf. on Durability of concrete, Vol. II, Montreal, 1991, 1163–1183.

    Google Scholar 

  24. Grimes, W.D., Hartt, W.H. and Turner, D.H., ‘Cracking of concrete in sea water due to embedded metal corrosion’,NACE —Corrosion 35 (7) (1979), 309.

    Google Scholar 

  25. Andrade, C., Alonso, C. and Molina, F.J., ‘Cover cracking as a function of bar corrosion. Part I. Experimental test’,Mater. Struct. 26 (1993) 453–464.

    Article  Google Scholar 

  26. Molina, F.J., Alonso, C., Andrade, C., ‘Cover cracking as a function of bar corrosion. Part II. Numerical model,’Ibid. Mater. Struct. 532–548.

  27. Reinhardt, H. and Cornelissen, H.K.W., ‘Dauerstand-zugfestigkeit von Beton Baustoff 85’, Bauverlag, Wiesbaden (1985).

    Google Scholar 

  28. Galvele, R.J., ‘Transport processes and the mechanism of pitting of metals’,Journal of Electrochemical Soc.,123 (4) (1976) 464–474.

    Article  Google Scholar 

  29. Treadaway, K.W.J., Cox, R.N. and Brown, B.L., ‘Durability of corrosion resisting steels in concrete’,Proc. Inst. Civil Engrs, Part I,86 (1989) 305.

    Google Scholar 

  30. Tuutti, K., ‘Corrosion of Steel in Concrete’, Swedish Cement and Concrete Research Institute, 1982.

  31. Müller, K.F., ‘The possibility of evolving a theory for predicting the service life of reinforced concrete structures’, Proceedings of QCI-RILEM International Symposium on Long-term Observation of Concrete Structures, Budapest, 1984, 9.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Dr. M.-C. Alonso and Dr. C. Andrade work at the Instituto de Ciencias de la Construccion “Eduardo Torroja”, Spain, a RILEM Titular Member. Dr. Alonso is a Senior Member of RILEM and a member of TC 154-EMC. Dr. Andrade is Vice President of RILEM and a member of the Bureau. A RILEM Senior Member and a RILEM Fellow, Dr. Andrade is Chairlady of TC 154-EMC (Electrochemical Techniques for Measuring Metallic Corrosion in Concrete) and TMC (Testing and Modelling Chloride Penetration in Concrete) and participates in the work of TC 116-PCD (Permeability of Concrete as a Criterion of its Durability). J. Rodriguez and J. M. Diez work at Geocisa, Spain a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, C., Andrade, C., Rodriguez, J. et al. Factors controlling cracking of concrete affected by reinforcement corrosion. Mat. Struct. 31, 435–441 (1998). https://doi.org/10.1007/BF02480466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480466

Keywords

Navigation