Skip to main content
Log in

Cover cracking as a function of bar corrosion: Part I-Experimental test

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The appraisal of concrete structures suffering rebar corrosion is one of the most urgent needs regarding the selection of the technical and economical optimum time for repair. Up to now this appraisal has been mainly based on empirical and subjective considerations. Among the different distressing consequences of rebar corrosion the best known is the cracking of concrete cover. However, very few data have been reported in the literature on the amount of corrosion needed to induce this cracking. In the present paper, some preliminary experiments are reported in which small reinforced beams are artificially corroded by an impressed current, and the amount of current (and loss of bar cross-section) needed to induce the crack at the surface are monitored, together with the evolution of crack width, by the use of strain gauges applied to the surface of the specimens. In a companion paper, a numerical model to relate the decrease in rebar cross-section to the cover cracking will be developed. That model is based on the orderly imposition of corrosion to finite elements of the rebar by a fictitious temperature increment that produces analogous effects, while concrete cracking is introduced by a standard smeared-crack model. The experimental results indicate that only a few micrometres of loss in rebar cross-section are needed to induce visible cover cracks (0.1 mm width) in the conditions of the test.

Resume

L'évaluation de la vie résiduelle des structures qui sont en train de se corroder constitue l'une des plus urgenetes nécessités techniques qu'il convient de résoudre étant donné ses implications économiques dans le choix du moment optimal pour entreprendre la réparation. Jusqu'à présent, cette évaluation s'est faite, en règle générale, de façon subjective et empirique.

Pari les différentes conséquences de la corrosion de l'armature, la fissuration de l'enrobage est la plus fréquente. Cependant, on trouve très peu d'information dans la littérature sur le taux de corrosion qui détermine une telle fissuration. Dans ce travail, on présente des résultats préliminaires pour de petites poutrelles qui sont artificiellement corrodées en générant un courant; la quantité nécessaire de courant pour provoquer la fissuration de l'enrobage est mesurée simultanément avec l'évolution de la largeur de la fissure contrôlée par des extensomètres placés sur la surface du béton.

Dans la deuxième partie de ce travail, on présentera un modèle numérique afin d'établir un rapport entre la diminution de la section transversale de l'armature et la fissuration qu'elle déloppe. Ce modéle est basé sur l'effet régulier de corrosion imposé aux éléments finis de l'armature par une augmentation fictive de la température qui produit des effects analogues, pendant que la fissuration est introduite par un modèle de fissuration diffuse. Les résultats indiquent qu'il suffit de quelques micromètres de perte de section (10 μm environ) pour produire une fissure visible (0,1 mm de largeur) dans les conditions de l'essai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, R. D., Geoghegan, M. P. and Baker A. F., ‘Corrosion of reinforcement in concrete construction’, Ch. 13. A. P. Crane Ed. SCI Publisher. London 1983.

    Google Scholar 

  2. Funhashi, M., ‘Predicting corrosion-free service life of a concrete structure in a chloride environment’,ACI Mater. J. (Nov–Dec 1990) 581.

  3. Sygula, S. and Riz, K., ‘Longitudinal cracking and its relation to service life of reinforced concrete bridges’, in Proceedings of ACI-RILEM International Symposium on Long-term observation of Concrete Structures’, Budapest, 1984, pp. 182–192.

  4. Braun, K., ‘Prediction and evalution of durability of reinforced concrete elements and structures,’ in Proceedings of 4th Conference on Durability of Building Material and Components, Singapore, 1987, pp. 383–388.

  5. Uomoto, T. and Misra, S., ‘Behaviour of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place’, in ACI SP-109, Proceedings of 2nd International Conference on Concrete in Marine Environment, St. Andrews-by-the-Sea, Canada 1988, pp. 127–146.

  6. Allan, M. L. and Cherry, B. W., ‘Factors controlling the amount of corrosion for cracking in reinforced concrete’, in Proceedings of ‘Corrosion 91 NACE’, Cincinnati, USA, March, 1991, Paper 125.

  7. Ravindrarajah, R. and Ong, K., ‘Corrosion of steel in concrete in relation to bar diameter and cover thickness’, ACI SP 100-84, 1668.

  8. Okada, K., Kobayashi, K. and Miyagawa, T., ‘Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members’,ACI Struct. J. (March–April, 1988) 1134.

  9. Saeki, N., Fujita, Y., Takada, N. and Ohta, T., ‘Control of rust damage of reinforced concrete in corrosive environment’, in ACI SP-109, Proceedings of 2nd International Conference on Concrete in Marine Environment, St. Andrews-by-the-Sea, Canada, 1988, pp. 163–178.

  10. Rodriguez, J. and Andrade, C., ‘Load-bearing capacity loss in corroding structures’, in Proceedings of ACI Convention, Toronto, 1990.

  11. Andrade, C., Alonso, C., González, J. A. and Rodríguez, J., ‘Remaining service life of corroded structures’, in Proceedings of IABSE Symposium on Durability of Structures, Lisbon, September 1989, pp. 359–363.

  12. Grimes, W. D., Hartt, W. H. and Turner, D. H., ‘Cracking of concrete in sea water due to embedded metal corrosion’, inNACE—Corrosion 35 (7) (1979), 309.

    Google Scholar 

  13. Uomoto, T. and Misra, S., ‘Deterioration of concrete beams and columns caused by corrosion of reinforcing steel bars’, in Proceedings of 4th International Conference on Durability of Building Materials and Components, Singapore, 1987, p. 420.

  14. Mansour, T. J., “Corrosion prevention for steel reinforcement of concrete’, Doctoral thesis, El Cairo (1989).

  15. Andrade, C., Alonso, C. and Molina, F. J., ‘Cover cracking as a function of bar corrosion: Part 2’,Mater. Struct. (1993) in press.

  16. Hachemi, A. A., Murat, M. and Cubaud, J. C., ‘Recherche sur l'accélération de la corrosion des aciers dans le béton armé—Etude électrochimique théorique et expérimental,’Rev. Matér. Constr. No 700 (3/1976) p. 149.

    Google Scholar 

  17. Andrade, C. and Gonzalez, J. A., Quantitative corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements,’Werkst. Korros. No. 29 (1979) 515–519.

    Article  Google Scholar 

  18. Reinhardt, H. and Cornelissen, H. K. W., ‘Dauerstand-zugfestigkeit von Beton Baustoff '85’ (Bauverlag, Wiesbaden, 1985).

    Google Scholar 

  19. Tuutti K., ‘Corrosion of Steel in Concrete' (Swedish Cement and Concrete Research Institute, 1982).

  20. Treadaway, K. W. J., Cox, R. N. and Brown, B. L., ‘Durability of corrosion resisting steels in concrete’,Proc. Inst. Civil Engrs Part I 86 (1989) 305.

    Google Scholar 

  21. Müller, K. F., ‘The possibility of evolving a theory for predicting the service life of reinforced concrete structures’, in Proceedings of QCI-RILEM International Symposium on Long-term Observation of Concrete Structures, Budapest, 1984, p. 9.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C., Alonso, C. & Molina, F.J. Cover cracking as a function of bar corrosion: Part I-Experimental test. Materials and Structures 26, 453–464 (1993). https://doi.org/10.1007/BF02472805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472805

Keywords

Navigation