Skip to main content
Log in

Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method is a promising approach for modeling single and multicomponent fluid flow in complex geometries like porous materials. Here, we review some of our previous work and discuss some recent developments concerning fluid flow in multiple pore size materials. After presenting some simple test cases to validate the model, results from large scale simulations of single and multi-component fluid flow through digitized Fontainebleau sandstone, generated by X-Ray microtomography, are given. Reasonably good agreement was found when compared to experimentally determined values of permeability for similar rocks. Finally, modification of the lattice Boltzmann equations, to describe flow in microporous materials, is described. The potential for modeling flows in other microstructures of interest to concrete technology will be discussed.

Résumé

La méthode Lattice Boltzmann est une approche à grand potentiel pour modeler l'écoulement à travers une géométrie complexe, comme celle des matériaux poreux, d'un fluide simple ou à composants multiples. Ici, nous passerons en revue une partie du travail complété et nous discuterons les développements récents concernant l'écoulement d'un fluide dans un matériau poreux ayant une large distribution de la dimension des pores. Nous présenterons, d'abord, des cas simples pour valider le modèle et, ensuite, des cas plus complexes incluant des écoulements de fluides simples ou à composants multiples dans une structure digitalisée d'un grès de Fontainebleau. La structure du grès fut générée par micrographie à Rayon-X. Les résultats du modèle ont une bonne corrélation avec la mesure de perméabilité déterminée sur des pierres similaires. Enfin, une modification des équations de la lattice Boltzmann permet de décrire l'écoulement à travers un matériau micro-poreux. Nous discuterons aussi la possibilité de modeler l'écoulement d'un fluide à travers d'autres micro-structures inspirées de la technologie du béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dullien, F.A.L., ‘Porous Media Fluid Transport and Pore Structure’, (2nd ed. Academic Press, Inc., San Diego 1992).

    Google Scholar 

  2. Many of the results presented in this paper originally appeared in the following paper: Martys, N.S., Hagedorn, J.G. and Devaney, J.E., ‘Pore scale modeling of fluid transport using discrete Boltzmann methods’, in ‘Materials Science of Concrete’, (Ed. R. D. Hooten, M.D.A. Thomas, J. Marchand, J.J. Beaudoin, 2001).

  3. Rothman, D.H. and Zaleski, S., ‘Lattice-gas model of phase separation: interfaces, phase transitions, and multiphase flow’,Rev. Mod. Phys. 66 (4) (1998) 1417–1479 and references.

    Article  Google Scholar 

  4. Shan, X. and Chen, H., ‘A lattice Boltzmann model for simulating flows with multiple phases and components’,Phys. Rev. E. 47 (1993) 1815–1819.

    Article  Google Scholar 

  5. Martys, N.S. and Chen, H., ‘Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method’,Phys. Rev. E. 53 (1996) 743–750.

    Article  Google Scholar 

  6. Qian, Y.H., d'Humières, D. and Lallemand, P., ‘Lattice BGK models for Navier-Stokes equation’,Europhys. Lett. 17 (1992) 479–484.

    MATH  Google Scholar 

  7. Chen, H., Chen, S.Y. and Matthaeus, W.H., ‘Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method’,Phys. Rev. A. 45 (1992) R5339-R5342.

    Article  Google Scholar 

  8. Shan, X. and Doolen, G., ‘Diffusion in a multicomponent lattice Boltzmann equation model’,Phys. Rev. E. 54 (1996) 3616–3620.

    Article  Google Scholar 

  9. Martys, N.S. and Douglas, J.F., ‘Critical properties and phase separation in lattice Boltzmann fluid mixtures’,Phys. Rev. E. 63 (2001) 31205.

    Article  Google Scholar 

  10. Martys, N.S., Shan, X. and Chen, H., ‘Evaluation of the external force term in the discrete Boltzmann equation’,Phys. Rev. E. 58 (1998) 6855.

    Article  Google Scholar 

  11. Message Passing Interface Forum, ‘MPI: A Message-Passing Interface Standard’,International Journal of Supercomputing Applications 8 (1994) [3/4].

  12. Chapman, A.M. and Higdon, J.J.L., ‘Oscillatory stokes flow in periodic porous media’,Phys. Fluids A. 4 (1992) 2099–2116 [10].

    Article  Google Scholar 

  13. Bourbie, T. and Zinszner, B., ‘Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone’,J. Geophys. Res. 90 (1985) 11,524–11,532 [B13].

    Article  Google Scholar 

  14. Goode, P.A. and Ramakrishnan, T.S., ‘Momentum transfer across fluid-fluid interfaces in porous media: a network model’,AIChE Journal 39 (1993) 1124–1134 [7].

    Article  Google Scholar 

  15. Landis, E.N. and Keane, D.T., ‘X-ray microtomography for fracture studies in cement-based materials’, in Proceedings of SPIE, Developments in X-Ray Tomography II, ed. U. Bonse, 1999, 3772.

  16. Koplik, J., Levine, H., and Zee, A., ‘Viscosity renormalization in the Brinkman equation’,Phys. Fluids 26 (1983) 2864.

    Article  MATH  Google Scholar 

  17. Brinkman, H.C., ‘A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles’,Appl. Sci. Res. A 1 (1947) 27.

    Article  Google Scholar 

  18. Martys, N.S., Bentz, D.P., and Garboczi, E.J., ‘Computer simulation study of the effective viscosity in Brinkman's equation’,Phys. Fluids 6 (1994) 1434.

    Article  MATH  Google Scholar 

  19. Spaid, M.A.A. and Phelan, F.R., ‘Lattice Boltzmann methods for modeling microscale flow in fibrous porous media’Phys. Fluids 9 (1997) 2468.

    Article  MathSciNet  MATH  Google Scholar 

  20. Martys, N.S., ‘Improved approximation of the Brinkman equation using a lattice Boltzmann Method’,Physics of Fluids 13 (6) (2001) 1807–1810.

    Article  Google Scholar 

  21. Martys, N.S., ‘A classical kinetic theory approach to lattice Boltzmann simulation’,Int. J. Mod. Phys. C. 12 (8) (2001) 1169–1178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note The National Institute of Standards and Technology (NIST) is a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martys, N.S., Hagedorn, J.G. Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. Mat. Struct. 35, 650–658 (2002). https://doi.org/10.1007/BF02480358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480358

Keywords

Navigation