Skip to main content
Log in

In vitro control of organogenesis and fundamental embryonic form by the peptide growth factor activin

  • Hybrid Artificial Organs: Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The discovery that peptide growth factors are capable of embryonic induction has led to rapid growth in our understanding of this process. One of these factors, activin, can control mesoderm formation inXenopus animal caps in a dose-dependent manner. Activin may also participate in kidney and heart organogenesis in combination with other factors. Further, animal caps treated with a high concentration of activin clearly show organizer actions, which are closely related to the fundamental body plan along the anteroposterior axis. These in vitro experiments will serve as an excellent model system for analysis of cell differentiation, organogenesis, and morphogenesis at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spemann H, Mangold H. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch Mikrosk Anat Entwicklungsmech 1924;100:599–638

    Article  Google Scholar 

  2. Asashima M, Nakano H, Shimada K, Kinoshita K, Ishii K, Shibai H, Ueno N. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux's Arch Dev Biol 1990;198:330–335

    Article  CAS  Google Scholar 

  3. Ariizumi T, Moriya N, Uchiyama H, Asashima M. Concentration-dependent inducing activity of activin A. Roux's Arch Dev Biol 1991;200:230–233

    Article  CAS  Google Scholar 

  4. Ariizumi T, Asashima M. Head and trunk-tail organizing effects of the gastrula ectoderm ofCynops pyrrhogaster after treatment with activin A. Roux's Arch Dev Biol 1995;204:427–435

    Article  CAS  Google Scholar 

  5. Ariizumi T, Komazaki S, Asashima M. Activin-treated urodele animal caps: II. Inductive interactions of newt animal caps after treatment with activin A. Zool Sci 1999;16:115–124

    Article  CAS  Google Scholar 

  6. Ariizumi T, Komazaki S, Asashima M, Malacinski GM. Activin treated urodele ectoderm: a model experimental system for cardiogenesis. Int J Dev Biol 1996;40:715–718

    PubMed  CAS  Google Scholar 

  7. Moriya H, Uchiyama H, Asashima M. Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm ofXenopus laevis. Dev Growth Different 1993;35:123–128

    Article  CAS  Google Scholar 

  8. Ninomiya H, Ariizumi T, Asashima M. Activin-treated ectoderm has complete organizing center activity inCynops embryos. Dev Growth Different 1998;40:199–208

    Article  CAS  Google Scholar 

  9. Yamada T, Takata K. A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula. Dev Biol 1961;3:411–423

    Article  PubMed  CAS  Google Scholar 

  10. Holtfreter J. Nachweis der Induktionsfähigkeit abgetötete-Keimteile. Isolations- und Transplantationsversuche. Wilhelm Roux' Arch Entwicklungsmech Org 1933;128:584–633

    Article  Google Scholar 

  11. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R. A homodimer of the β-subunits of inhibin A stimulates the secretion of pituitary follicle-stimulating hormone. Biochem Biophys Res Commun 1986;138:1129–1137

    Article  PubMed  CAS  Google Scholar 

  12. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess Y. Purification and characterization of a FSH releasing protein from porcine ovarian follicular fluid. Nature 1986;321:776–779

    Article  PubMed  CAS  Google Scholar 

  13. Asashima M. Mesoderm induction during early amphibian development. Dev Growth Different 1994;36:343–355

    Article  Google Scholar 

  14. Slack JMW, Darlington BG, Heath JK, Godsave SF. Mesoderm induction in earlyXenopus embryos by heparin-binding growth factors. Nature 1987;326:197–200

    Article  PubMed  CAS  Google Scholar 

  15. Asashima M, Nakano H, Uchiyama H, Sugino H, Nakamura T, Eto Y, Ejima D, Nishimatsu S, Ueno N, Kinoshita K. Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae ofXenopus laevis. Proc Natl Acad Sci USA 1991;88: 6511–6514

    Article  PubMed  CAS  Google Scholar 

  16. Uchiyama H, Nakamura T, Komazaki S, Takio K, Asashima M, Sugino H. Localization of activin and follistatin proteins in theXenopus oocyte. Biochem Biophys Res Commun 1994;202:484–489

    Article  PubMed  CAS  Google Scholar 

  17. Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA. Expression of activin mRNA during early development inXenopus laevis. Dev Biol 1993;157:474–483

    Article  PubMed  CAS  Google Scholar 

  18. Okabayashi K, Shoji H, Nakamura O, Nakamura T, Hashimoto O, Asashima M, Sugino H. cDNA cloning and expression of theXenopus laevis vitellogenin receptor. Biochem Biophys Res Commun 1996;224:406–413

    Article  PubMed  CAS  Google Scholar 

  19. Jacobson AG. Influences of ectoderm and endoderm on heart differentiation in the newt. Dev Biol 1960;2:138–154

    Article  PubMed  CAS  Google Scholar 

  20. Jacobson AG. Heart determination in the newt. J Exp Zool 1961;146:139–152

    Article  PubMed  CAS  Google Scholar 

  21. Jacobson AG, Duncan JT. Heart induction in salamanders. J Exp Zool 1968;167:79–103

    Article  PubMed  CAS  Google Scholar 

  22. Saxén L. Organogenesis of the kidney. Cambridge: Cambridge University Press, 1987

    Google Scholar 

  23. Fox H. The amphibian pronephros. Q Rev Biol 1963;38:1–25

    Article  PubMed  CAS  Google Scholar 

  24. Vize PD, Jones EA, Pfister R. Development ofXenopus pronephric system. Dev Biol 1995;171:531–540

    Article  PubMed  CAS  Google Scholar 

  25. Weller A, Sorokin L, Illgen EM, Ekblom P. Development and growth of mouse embryonic kidney in organ culture and modulation of development by soluble growth factor. Dev Biol 1991;144:248–261

    Article  PubMed  CAS  Google Scholar 

  26. Uochi T, Asashima M, Sequential gene expression during pronephric tubule formation in vitro and inXenopus ectoderm. Dev Growth Different 1996;38:625–634

    Article  CAS  Google Scholar 

  27. Chan T, Ariizumi T, Asashima M. A model system for organ engineering: transplantation of in vitro induced embryonic kidney. Naturwissenschaften 1999;86:224–227

    Article  PubMed  CAS  Google Scholar 

  28. Abercrombie M. Localized formation of new tissue in an adult mammal. Symp Soc Exp Biol 1957;12:235–254

    Google Scholar 

  29. Fox H. The effect of unilateral blockage of a pronephric duct upon the development of the pronephros inTriturus helveticus. J Embryol Exp Morphol 1957;5:274–282

    Google Scholar 

  30. Muslin AJ, Williams LT. Well-defined growth factors promote cardiac development in axolotl mesodermal explants. Development 1991;112:1095–1101

    PubMed  CAS  Google Scholar 

  31. Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 1995;168:567–574

    Article  PubMed  CAS  Google Scholar 

  32. Mangold O, Spemann H. Über Induktion von Medullarplatte durch Medullarplatte im Jüngeren Keim. Wilhelm Roux' Arch Entwicklungsmech Org 1927;111:593–665

    Article  Google Scholar 

  33. Spemann H. Über den Anteil von Implantat und Wirtskeim an der Orientierung und Beschaffenheit der induzierten Embryonalanlage. Wilhelm Roux' Arch Entwicklungsmech Org 1931;123: 389–518

    Article  Google Scholar 

  34. Mangold O. Über die Induktionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 1933;21:761–766

    Article  Google Scholar 

  35. Hama T, Tsujimura H, Kanéda T, Takata K, Ohara A. Inductive capacities of the dorsal mesoderm of the dorsal marginal zone and pharyngeal endoderm in the very early gastrula of the newt, and presumptive pharyngeal endoderm as an initiator of the organization center. Dev Growth Different 1985;27:419–433

    Article  Google Scholar 

  36. Niuwkoop PD. The formation of mesoderm in urodelan amphibians. Part 1. Induction by the endoderm. Wilhelm Roux' Arch Entwicklungsmech Org 1969;162:341–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Asashima PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariizumi, T., Asashima, M. In vitro control of organogenesis and fundamental embryonic form by the peptide growth factor activin. J Artif Organs 2, 117–123 (1999). https://doi.org/10.1007/BF02480052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480052

Key words

Navigation