Skip to main content
Log in

Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Hydrolyzable polyrotaxanes, in which many α-cyclodextrins (α-CD) are threaded onto a poly(ethylene glycol) (PEG) chain capped withl-phenylalanine via ester linkages, were synthesized to estimate the supramolecular dissociation via terminal ester hydrolysis. The polyrotaxane showed unique thermoresistant properties due to the supramolecular structure. The supramolecular structure was completely dissociated by terminal ester hydrolysis. PEG hydrogels cross-linked with the polyrotaxane were prepared as new candidate implantable materials for tissue engineering. It is suggested that controlling the rate of terminal ester hydrolysis and the following supramolecular dissociation may dominate the disappearance of the hydrogel. These findings will be of great importance for designing a scaffold based on the primary structure of the polyrotaxane that shows dual characteristics of excellent mechanical properties and perfect disappearance from an implanted site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926

    PubMed  CAS  Google Scholar 

  2. Hubbell JA, Langer R. Tissue engineering. Chem Eng News 1995;73(11):42–54

    CAS  Google Scholar 

  3. Langer R, Vacanti JP. Tissue engineering: the challenges ahead. Sci Am 1999;April:86–89

    Article  Google Scholar 

  4. Mooney DJ, Mikos AG. Growing new organs. Sci Am 1999;April:60–65

    Google Scholar 

  5. Langer R. New methods of drug delivery. Science 1990;249:1527–1533

    PubMed  CAS  Google Scholar 

  6. Gilding DK, Reed AM. Biodegradable polymers for use in surgery: polyglycolic/poly(lactic acid) homo and copolymers: 1. Polymer 1979;20:1459–1464

    Article  CAS  Google Scholar 

  7. Reed AM, Gilding DK. Biodegradable polymers for use in surgery: poly(glycolic)/poly(lactic acid) homo and copolymers: 2. in vitro degradation. Polymer 1981;22:494–498

    Article  CAS  Google Scholar 

  8. Lam KH, Schakenraad JM, Esselbrugge H, Feijen J, Nieuwenhuis P. The effect of phagocytosis of poly(l-lactic acid) fragments on cellular morphology and viability. J Biomed Mater Res 1993;27:1569–1577

    Article  PubMed  CAS  Google Scholar 

  9. Cohn D, Younes H. Compositional and structural analysis of PLA biodegradable block copolymers degrading under in vitro conditions. Biomaterials 1989;10:466–474

    Article  PubMed  CAS  Google Scholar 

  10. Li SM, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media: Part 2. Degradation of lactide-glycolide copolymer. J Mater Sci Mater Med 1990;1:131–139

    Article  CAS  Google Scholar 

  11. Li SM, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media: Part 3. Influence of the morphology of poly(l-lactic acid). J Mater Sci Mater Med 1990;1:198–206

    Article  CAS  Google Scholar 

  12. Sawhney AS, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 1993;26:581–587

    Article  CAS  Google Scholar 

  13. Han DK, Hubbell JA. Synthesis of polymer network scaffolds froml-lactide and poly(ethylene glycol) and their interaction with cells. Macromolecules 1997;30:6077–6083

    Article  CAS  Google Scholar 

  14. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chain. Macromolecules 1996;29:50–56

    Article  CAS  Google Scholar 

  15. Li SM, Rashkov I, Espartero JL, Manolova N, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 1996;29:57–62

    Article  CAS  Google Scholar 

  16. Harada A, Kamachi M. Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules 1990;23: 2821–2823

    Article  CAS  Google Scholar 

  17. Harada A, Li J, Kamachi M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 1992;356:325–327

    Article  CAS  Google Scholar 

  18. Ooya T, Yui N. Polyrotaxanes: synthesis, structure, and potential in drug delivery. Crit Rev Ther Drug Carrier Syst 1999;16:289–330

    PubMed  CAS  Google Scholar 

  19. Ooya T, Yui N. Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation. J Controlled Release 1999;58:251–269

    Article  CAS  Google Scholar 

  20. Yui N, Ooya T, Kumeno T. Effect of biodegradable polyrotaxanes on platelet activation. Bioconjugate Chem 1998;9:118–125

    Article  CAS  Google Scholar 

  21. Ooya T, Kumeno T, Yui N. Regulation of intracellular metabolism by biodegradable polyrotaxanes. J Biomater Sci Polym Edn 1998;9:313–326

    CAS  Google Scholar 

  22. Watanabe J, Ooya T, Yui N. Preparation and characterization of a polyrotaxane with non-enzymatically hydrolyzable stoppers. Chem Lett 1998:1031

  23. Harada A, Li J, Kamachi M. Preparation and properties of inclusion complexes of poly(ethylene glycol) with α-cyclodextrin. Macromolecules 1993;26:5698–5703

    Article  CAS  Google Scholar 

  24. Watanabe J, Ooya T, Yui N. Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. J Biomater Sci Polym Edn 1999;10:1275–1288

    CAS  Google Scholar 

  25. Panova IG, Gerasimov VI, Grokhovskaya YE, Topchiva IN. Novel nanostructures based on block copolymers: inclusion complexes of proxanols with cyclodextrins. Doklady Chem 1996;347:58–61

    Google Scholar 

  26. Yui N, Okano T, Sakurai Y. Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery. J Controlled Release 1993;26:141–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Yui PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, J., Ooya, T. & Yui, N. Feasibility study of hydrolyzable polyrotaxanes aiming at implantable materials. J Artif Organs 3, 136–142 (2000). https://doi.org/10.1007/BF02479980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479980

Key words

Navigation