Skip to main content
Log in

Current status of development and in vivo evaluation of the National Cardiovascular Center electrohydraulic total artificial heart system

  • Next-Generation Devices: Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

We have been developing an electrohydraulic total artificial heart system. The system has a pumping unit, consisting of diaphragm-type blood pumps and an energy converter, and an electronics unit, consisting of an internal controller, an internal battery, and transcutaneous energy transfer and optical telemetry subunits. The energy converter, designed to be placed outside the pericardial space, reciprocates and delivers hydraulic silicone oil to the alternate blood pumps through a pair of flexible oil conduits. The left-right output balance is achieved with an interatrial shunt made in the composite atrial cuff. In vivo performance of the pumping unit has been evaluated by chronic implantation of 16 calves weighing 54–88 kg. Five calves survived for more than a week, and the longest-surviving animal lived for over 12 weeks until its accidental death. In this animal, a cardiac output of 6–81/min was maintained by the device with power consumption of 13.5±0.9W and 9%–11% efficiency. The left and right atrial pressures were 16±4 and 14±4 mm Hg, respectively, and the left-right output difference was adequately balanced with the interatrial shunt. The mixed venous oxygen saturation was 65±6% and the serum lactate level was 5±1 mg/dl, representing favorable oxygen metabolic conditions. The temperatures of the energy converter and the blood pump surfaces were 39.4±0.7° and 38.8±1.5°C, respectively, indicating that heat generation and dissipation were acceptable. The serum and tissue silicon levels were within normal (<1 μg/ml or <1 μg/g), indicating that permeation of silicone oil through the blood pump diaphragm was inconsequential and unlikely to be detrimental. We conclude that the system has the potential to be a totally implantable cardiac replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogness JR, VanAntwerp M (eds) Committee to Evaluate the Artificial Heart Program of the National Heart, Lung, and Blood Institute, Division of Health Care Service, Institute of Medicine. The artificial heart: prototypes, policies, and patients. Washington, DC: National Academy Press, 1991.

    Google Scholar 

  2. Request for Proposal No. NHLBI-HV-92-28. Bethesda, MD: National Heart, Lung, and Blood Institute, 1992

  3. Tatsumi E, Khanwilkar PS, Rowles JR, Chiang BY, Burns GL, Long JW, Hansen AC, Holfert JW, Bearnson GB, Crump KR, Krivoy SR, Smith NL, Olsen DB. In vivo long-term evaluation of the Utah electrohydraulic total artificial heart. ASAIO J 1993;39:M373-M380

    PubMed  CAS  Google Scholar 

  4. Snyder AJ, Rosenberg G Weiss WJ, Ford SK, Nazarian RA, Hicks DL, Marlotte JA, Kawaguchi O, Prophet GA, Sapirstein JS, Schwartz M, Pierce WS In vivo testing of a completely implantable total artificial heart system. ASAIO J 1993;39:M177-M184

    PubMed  CAS  Google Scholar 

  5. Taenaka Y, Takano H, Takatani S, Yagura A, Kinoshita M, Noda H, Tatsumi E, Akutsu T, Uyama C. Design and trial fabrication of a total artificial heart for Japanese. Jpn J Artif Organs 1988;17:835–838

    Google Scholar 

  6. Taenaka Y, Sekii H, Tatsumi E, Nakatani T, Sasaki E, Yagura A, Akagi H, Masuzawa T, Goto M, Matsuo Y, Takano H. An electrohydraulic total artificial heart with a separately placed actuator. Trans Am Soc Artif Intern Organs 1990;36:M242-M245

    CAS  Google Scholar 

  7. Tatsumi E, Taenaka Y, Masuzawa T, Choi W, Toda W, Miyazaki K, Nakatani T, Yagura A, Baba Y, Eya K, Wakisaka Y, Tominaga ME, Takano H, Uyama C, Koshiji K, Nomura T, Yasaki T, Shu E, Utsunomiya T, Ohno T, Fukui Y. Development of an electrohydraulic total artificial heart system. In: Akutsu T, Koyanagi H (eds) Heart replacement artificial heart 5. Tokyo: Springer-Verlag, 1996:101–107

    Google Scholar 

  8. Masuzawa T, Taenaka Y, Tatsumi E, Ahn JM, Ohno T, Toda K, Miyazaki K, Wakisaka Y, Eya K, Baba Y, Nakatani T, Takano H, Uyama C, Koshiji K, Fukui Y, Takahashi K, Tsuchimoto K, Tsukahara K. Set-up, improvement, and evaluation of an electrohydraulic total artificial heart with a separately placed energy converter. ASAIO J 1996;42:M328-M332

    PubMed  CAS  Google Scholar 

  9. Koshiji K, Yazaki T, Nomura T, Shu E, Utsunomiya T, Niwa S, Anai H, Masuzawa T, Taenaka Y, Takano H. Externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart. Proc 15th Int IEEE Eng Med Biol 1993:909–910

  10. Tatsumi E, Nakamura M, Masuzawa T, Taenaka Y, Sohn Y, Nishimura T, Nakata M, Nakatani T, Ohno T, Endo S, Takiura K, Takewa Y, Kakuta Y, Takano H. In vitro and in vivo evaluation of left-right balancing capacity of an interatrial shun in an electrohydraulic total artificial heart system. ASAIO J 1997;43:M619-M625

    PubMed  CAS  Google Scholar 

  11. Tatsumi E, Diegel PD, Holfelt JW, Dew PA, Crump KR, Hansen AC, Khanwilkar PS, Rowles JR, Olsen DB. A blood pump with an interatrial shunt for use as an electrohydraulic total artificial heart. ASAIO J 1992;38:M425-M430

    PubMed  CAS  Google Scholar 

  12. Masuzawa T, Taenaka Y, Kinoshita M, Nakatani T, Akagi H, Takano H, Fukui Y. An electrohydraulic totally implantable artificial heart with a motor-integrated regenerative pump. In: Akutsu T, Koyanagi H (eds) Heart replacement artificial heart 4. Tokyo: Springer-Verlag, 1993:143–146

    Google Scholar 

  13. Zhang B, Masuzawa T, Tatsumi E, Taenaka Y, Uyama C, Takano H, Takamiya M. Three-dimensional thoracic modeling for an anatomical compatibility study of the implantable total artificial heart. Artif Organs 1999;23:229–234

    Article  PubMed  CAS  Google Scholar 

  14. Endo S, Masuzawa T, Tatsumi E, Taenaka Y, Nakatani T, Ohno T, Wakisaka Y, Nishimura T, Takewa Y, Nakamura M, Takiura K, Sohn Y, Takano H. In vitro and in vivo heart dissipation of an electrohydraulic totally implantable artificial heart. ASAIO J 1997;43:M592-M597

    Article  PubMed  CAS  Google Scholar 

  15. Tatsumi E, Taenaka Y, Uesho K, Nishinaka T, Imada K, Homma A, Takano H, Tsuchimoto K, Tsukahara K. In vitro and in vivo evaluation of silicone oil permeation through blood pump diaphragm in an electrohydraulic total artificial heart. ASAIO J 2000;46:169

    Google Scholar 

  16. Nakata M, Masuzawa T, Tatsumi E, Taenaka Y, Nishimura T, Tsukiya T, Takano H, Tsuchimoto K, Ohba K. Characterization and optimization of the flow pattern inside a diaphragm blood pump based on flow visualization techniques. ASAIO J 1998;44:M714-M718

    Article  PubMed  CAS  Google Scholar 

  17. Sato M, Kashiwabara S, Tanaka H, Tatsumi E, Taenaka Y, Takano H. In vitro antithrombogenic evaluation of newly developed heparinized coating material. Jpn J Artif Organs 1999;28:502–508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Tatsumi MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsumi, E., Taenaka, Y., Uesho, K. et al. Current status of development and in vivo evaluation of the National Cardiovascular Center electrohydraulic total artificial heart system. J Artif Organs 3, 62–69 (2000). https://doi.org/10.1007/BF02479967

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479967

Key words

Navigation