Skip to main content
Log in

A comparison of transport properties for concrete using the ponding test and the accelerated chloride migration test

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In order to develop a better understanding of the relationship between 90-day salt ponding test and accelerated chloride migration test (ACMT; the electrochemical technique is applied to accelerate chloride ion migration), the transport properties for concrete obtained from ACMT are compared to the diffusion coefficient from ponding test. The plain cement concrete, fly ash concrete, and slag concrete with different w/b ratios (0.35, 0.45, 0.55, and 0.65) were used. In this study, the total chloride content and penetration depth of concretes were measured after the ponding test, and the Fick's second law of diffusion was fitted to the data from experiment to determine the diffusion coefficient. The non-steady-state diffusion coefficient, the migration coefficient, and the current corresponding to the 30000 coulomb, charge passed obtained from ACMT in the previous works were compared with the diffusion coefficients obtained from ponding test. Parallel tests show that the diffusion coefficients obtained from ponding test correspond well with the non-steady-state diffusion coefficient, the migration coefficient, and the current corresponding to the 30000 coulomb charge passed obtained from ACMT, although the diffusion coefficient measured by ponding test is different from that measured by the ACMT in non-steady state and steady state.

Résumé

Pour mieux comprendre la relation entre l'essai de trempage dans l'eau salée pendant 90 jours et l'essai accéléré de migration de chlorure (ACMT; la technique électro-chimique est employée pour accélérer lamigration des ions chlorure), les propriétés de transport du béton obtenues par l'ACMT sont comparées au coefficient de diffusion de l'essai de trempage. Du ciment simple, des cendres volantes ainsi que des scories avec des rapports eau/liant différents (0.35, 0.45, 0.55 et 0.65) ont été utilisés. Dans cette étude, la teneur totale en chlorure et la profondeur de pénétration des ciments ont été mesurées après l'essai de trempage, et la seconde loi de diffusion de Fick correspond aux données tirées, d'expériences visant à déterminer le coefficient de diffusion. Le coefficient de diffusion de l'état non stationnaire, le coefficient de migration, et le courant de charge passé correspondant à 30000 coulombs obtenu à partir de l'ACMT d'expériences précédentes ont l'eté comparés aves les coefficients obtenus à partir de l'essai de trempage. Des essais parallèles montrent que les coefficients obtenus à partir de l'essai de trempage correspondent bien au coefficient de diffusion de l'état non stationnaire, le coefficient de migration, et le courant de charge passé correspondant à 30000 coulombs après l'ACMT, bien que le coefficient de diffusion mesuré par l'essai de trempage soit différent, dans les états non stationnaire et stationnaire de celui mesuré par l'ACMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade, C., Sanjuan, M.A., Recuero, A. and Rio, O., ‘Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions’,Cement and Concrete Research 24 (7) (1994) 1214–1228.

    Article  Google Scholar 

  2. Tang, L. and Nilsson, L., ‘Rapid determination of the chloride diffusivity in concrete by applying an electrical field’,ACI Materials Journal 89 (1) (1992) 49–53.

    Google Scholar 

  3. Tang, L., ‘Electrically accelerated methods for determining chloride diffusivity in concrete-current development’,Magazine of Concrete Research 48 (176) (1996) 173–179.

    Article  Google Scholar 

  4. Zhang, M.H. and Gjørv, O.E, ‘Permeability of high strength lightweight concrete’,ACI Materials Journal 88 (5) (1991) 463–469.

    Google Scholar 

  5. Andrade, C. and Sanjuan, M.A., ‘Experimental procedure for the calculation of chloride diffusion coefficients in concrete from migration tests’,Advances in Cement Research 6 (23) (1994) 127–134.

    Google Scholar 

  6. McGrath, P. and Hooton, R.D., ‘Influence of voltage on chloride diffusion coefficients from chloride migration tests’,Cement and Concrete Research 26 (8) (1996) 1239–1244.

    Article  Google Scholar 

  7. Delagrave, A., Marchand, J. and Samson, E., ‘Prediction of diffusion coefficients in cement-based materials on the basis of migration experiments’,Cement and Concrete Research 26 (12) (1996) 1831–1842.

    Article  Google Scholar 

  8. Yang, C.C., Cho, S.W. and Huang, R., ‘The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test’,Cement and Concrete Research 32 (2) (2002) 217–222.

    Article  Google Scholar 

  9. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration,ASTM C 1202-97, American Society for Testing and Materials (1997).

  10. Whiting, D., ‘Rapid measurement of the chloride permeability of concrete’,Public Roads 45 (3) (1981) 101–112.

    Google Scholar 

  11. Patrick, F., McGrath, R. and Hooton, D., ‘Re-evaluation of the AASHTO T259 90-day salt ponding test’,Cement and Concrete Research 29 (8) (1999) 1239–1248.

    Article  Google Scholar 

  12. Truc, O., Ollivier, J.-P. and Carcassès, M., ‘A new way for determining the chloride diffusion coefficient in concrete from steady state migration test’,Cement and Concrete Research 30 (2) (2000) 217–226.

    Article  Google Scholar 

  13. Tong, L. and Gjørv, O.E., ‘Chloride diffusivity based on migration testing’,Cement and Concrete Research 31 (7) (2001) 973–982.

    Article  Google Scholar 

  14. Castellote, M., Andrade, C. and Alonso, C., ‘Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber comparison with natural diffusion tests’,Cement and Concrete Research 31 (10) (2001) 1411–1420.

    Article  Google Scholar 

  15. Samson E., Marchand, J. and Snyder, K.A., ‘Calculation of ionic diffusion coefficients on the basis of migration test results’,Mater. Struct.,36 (257) (2003) 156–165.

    Article  Google Scholar 

  16. Standard Method of Test for Resistance of Concrete to Chloride Ion PenetrationAASHTO T259-80, Washington DC: American Association of State Highway and Transportation Officials (1980).

  17. Standard method of test for rapid determination of the chloride permeability of concrete,AASHTO T277-86, Washington DC: American Association of State Highway and Transportation Officials (1986).

  18. Yang, C.C. and Su, J.K., ‘Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar’,Cement and Concrete Research 32 (10) (2002) 1559–1565.

    Article  Google Scholar 

  19. Climent, M.A., Vera, G.d., Lopez, J.F., Viqueira, E. and Andrade, C., ‘A test method for measuring chloride diffusion coefficients through nonsaturated concrete—Part I. The instantaneous plane source diffusion case’,Cement and Concrete Research 32 (7) (2002) 1113–1123.

    Article  Google Scholar 

  20. Yang, C.C. and Cho, S.W., ‘An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials’,Materials Chemistry and Physics 81 (1) (2003) 116–125.

    Article  MathSciNet  Google Scholar 

  21. Halamickova, P., Detwiler, R.J., Bentz, D.P. and Garboczi, E.J., ‘Water permeability and chloride ion diffusion relationship to sand content and critical pore diameter’,Cement and Concrete Research 25 (4) (1995) 790–802.

    Article  Google Scholar 

  22. Andrade, C., ‘Calculation of chloride diffusion coefficients in concrete from ionic migration measurements’,Cement and Concrete Research 23 (3) (1993) 724–742.

    Article  Google Scholar 

  23. Yang, C.C. and Cho, S.W., ‘The relationship between chloride migration rate for concrete and electrical current in steady state using the accelerated chloride migration test’,Mater. Struct. 37 (271) (2004).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.C. A comparison of transport properties for concrete using the ponding test and the accelerated chloride migration test. Mat. Struct. 38, 313–320 (2005). https://doi.org/10.1007/BF02479296

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479296

Keywords

Navigation