Skip to main content
Log in

Contributions to the mathematical biology of excitation with particular emphasis on changes in membrane permeability and on threshold phenomena

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

Simple chemical reactions of Ca++ and K+ ions with a P ion in a membrane are assumed to be causes of changes in permeability of that membrane to K+ ions. On the basis of such a mechanism a quantative concept of membrane permeability to K+ ions is defined. The diffusion of K+ ions through such a membrane is studied mathematically in a simplified version. An applied electrical field as well as the diffusion potential of the K+ ions are considered to effect the chemical equilibrium constants of the proposed reactions. It is shown that such a system, which can be described by a set of nonlinear differential equations, may have two stable states of equilibrium which are separated by an unstable equilibrium state. As a consequence, such a system may possess a threshold. Estimations of resting potential, threshold—electrical as well as chemical—and of permeability increase, together with that of the corresponding electrical field strength are shown to have the correct order of magnitude. A possible way to derive the one-factor theory from a physical mechanism as considered here is outlined. It is pointed out that the dependence of the thresholds and the permeability changes on several parameters might be calculated on the basis of such a mechanism. As an example it is shown how in principle some of these relations are derived. Furthermore, the time course of excitatory disturbance for different intensities of the initial disturbance are derived theoretically for the case of chemical stimulation. The curves so obtained show a striking similarity in all the characteristic features with the corresponding ones which are obtained experimentally for the case of electrical stimulation of nerve. These results suggest that response to electrical and chemical stimulation is based on a common threshold phenomenon such as considered here. Finally, a more detailed mathematical description, which takes into account explicitly the diffusion of K+ ions through the membrane for a finite thickness of the membrane is outlined. The equations obtained, which seem to be infeasible of solution at the present time, suggest that it is plausible that relaxation oscillations with a threshold can be derived on the basis of such a mechanism as proposed here. Qualitative agreement with experimental evidence is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andronow, A. A. and C. E. Chaikin. 1949.Theory of Oscillations. (English Language Ed. by S. Lefshetz.) Princeton: Princeton University Press. (Russian Ed., 1937.)

    Google Scholar 

  • Arvanitaki, A. 1938a.Propriétés Rhythmiques de la Matière Vivante. I. Étude Expérimentale sur les nerfs isolés d'invertébrés. Paris: Hermann & Cie.

    Google Scholar 

  • — 1938b.Propriétés Rhythmique de la Matière Vivante. II. Étude Expérimentale sur le Myocarde d'Helise. Paris: Hermann & Cie.

    Google Scholar 

  • — 1939. “Recherches sur la Réponse Oscillatoire Locale de l'Axone Géant Isolé de ‘Sepia’.”Archiv. Intern. de Physiol. 49, 209–56.

    Google Scholar 

  • Auger, D. 1936.Comparaison entre la Rythmicité des Courants d'Action Cellulaires chez les Végétaux & chez les Animaux. Paris: Hermann & Cie, Ed.

    Google Scholar 

  • Bear, R. S. and F. O. Schmitt. 1939. “Electrolytes in the Axoplasm of the Giant Nerve Fibers of the Squid.”Jour. Cell. Comp. Physiol.,14, 205–15.

    Article  Google Scholar 

  • Bernstein, J. 1902. “Untersuchungen zur Thermodynamik der bioelektrischen Ströme.”Pflüg. Arch. f.d. ges. Physiol.,92, 521–62.

    Article  Google Scholar 

  • Bethe, A. 1937. “Rhythmik und Periodik besonders im Hinblick auf die Bewegungen des Herzens und der Meduse.”Pflüg. Arch.,239, 41–73.

    Google Scholar 

  • — 1943. “Die periodische Unterbrechung rhythmischer Vörgange im Vergleich zu ähnlichen Vorgängen an elektrischen Kipp systemen.” —Ibid.,,246, 485–519.

    Article  Google Scholar 

  • — and H. Schaefer. 1947. “Erregungsgesetze einer Blinkschaltung im Vergleich zu denen biologischen Objekte.”Pflüg. Arch.,249, 313–38.

    Article  Google Scholar 

  • Bonhoeffer, K. F. 1948a. “Activation of Passive Iron as a Model for the Excitation of Nerve.”Jour. Gen. Physiol.,32, 69–91.

    Article  Google Scholar 

  • — 1948b. “Über periodische chemische Reaktionen I.”Zeitschr. f. Elektroch. und angew. physik Chem.,51, 24–9.

    Google Scholar 

  • — et al. 1948c. “Über periodische chemische Reaktionen II.”Zeitschr. f. Elektroch. und angew physik. Chem.,51, 29–37

    Google Scholar 

  • — et al. 1948d. “Über periodische Reaktionen III.” —Ibid.,,52, 60–7.

    Google Scholar 

  • — et al. 1948e. “Über periodische Reaktionen IV.” —Ibid.,,52, 67–72.

    Google Scholar 

  • — et al. 1948f. “Über periodische Reaktionen V.” —Ibid.,52, 149–160.

    Google Scholar 

  • Brink, F. and others. 1946. “Chemical Excitation of Nerve.”Ann. N. Y. Acad. Sci.,47, 457–485.

    Google Scholar 

  • Cole, K. S. and H. J. Curtis. 1938. “Impedance of Nitella during Activity.”Jour. Gen. Physiol.,22, 37–64.

    Article  Google Scholar 

  • — 1939. “Impedance of the Squid Axon during Activity.” —Ibid.,,22, 649–670.

    Article  Google Scholar 

  • — 1940. “Membrane Potential of the Squid Giant Axon during Current Flow.” —Ibid.,24, 551–563.

    Article  Google Scholar 

  • Danielli, J. F. and H. Davson. 1935. “A Contribution to the Theory of Thin Films.”Jour. Cell. and Comp. Physiol.,5, 495–508.

    Article  Google Scholar 

  • Davson, H. and J. F. Danielli. 1943.The Permeability of Natural Membranes. Cambridge: University Press.

    Google Scholar 

  • Eichler, W. 1933. “Schwelle, Akkommodation und elektrotonische Erregbarkeitsänderung des Nerven als Phänomene der Erregungsleitung.”Zeitchr. f. Biol.,93, 407–458.

    Google Scholar 

  • Engström, A. and H. Lütky. 1950. “Distribution of mass and lipids in the nerve fiber.”Exp. Cell. Res.,1(1), 81–91.

    Article  Google Scholar 

  • Eriksson, E. 1949. “Ionic Diffusion through Membranes.”Ann. Roy. Agric. Coll. Sweden,16, 420–440.

    Google Scholar 

  • Fessard, A. 1931. “Les Rythmes Nerveuse et les Oscillations de Relaxation.”L'Année Psychol.,32, 49–117.

    Google Scholar 

  • — 1936a.Propriétés Rythmiques de la Matière Vivante I. Nerfs Isolés (1).Nerfs Myélinisés. Paris: Hermann & Cie.

    Google Scholar 

  • — 1936b.Propriétés Rythmiques de la Matière Vivante II. Nerfs Isolés (2). Nerfs non Myélinisés. Paris: Hermann & Cie.

    Google Scholar 

  • Fleckenstein, A. 1942. “Beitrag zum Mechanismus der Muskelkontraktion und zur Entstehung der Aktionströme.”Pflüg. Arch. f.d. ges. Physiol.,246, 411–27.

    Article  Google Scholar 

  • Friedrichs, K. O. 1946.On Nonlinear Vibrations of Third Order. New York: New York Univ. Inst. for Math. and Mech.

    Google Scholar 

  • Fulton, J. F. 1947.Howell's Textbook of Physiology. Philadelphia and London: Saunders Co.

    Google Scholar 

  • Heilbrunn, L. V. 1943.An Outline of General Physiology. Philadelphia and London: Saunders Co.

    Google Scholar 

  • Hill, S. E. and W. J. V. Osterhout. 1934. “Nature of the Action Current in Nitella. II.”Jour. Gen. Physiol.,18, 377–83.

    Article  Google Scholar 

  • — 1937. “Calculations of Bioelectric Potentials II.” —Ibid.,,21, 541–56.

    Article  Google Scholar 

  • — 1938. “Nature of the Action Current in Nitella IV.” —Ibid.,,22, 91–100.

    Article  Google Scholar 

  • Höber, R. 1945.Physical Chemistry of Cells and Tissues. Philadelphia and Toronto: The Blakiston Co.

    Google Scholar 

  • Hodgkin, A. L. 1947. “The Effect of Potassium on the Surface Membrane of an Isolated Axon.”Jour. Physiol.,106, 319–40.

    Google Scholar 

  • — 1949. “Ionic Exchange and Electrical Activity in Nerve and Muscle.”Arch. des. Sci. Physiol.,III, 151–64.

    Google Scholar 

  • — and A. F. Huxley. 1947. “Potassium Leakage from an Active Nervefiber.”Jour. Physiol.,106, 341–66.

    Google Scholar 

  • —, A. F. Huxley and B. Katz. 1949. “Ionic Currents Underlying Activity in the Giant Axon of the Squid.”Arch. des Sci. Physiol.,III, 129–50.

    Google Scholar 

  • Jordan, P. 1944. “Quantenphysik und Biologie.”Naturwissenschaften,32, 309–16.

    Article  Google Scholar 

  • Karreman, G. 1949. “Some Types of Relaxation Oscillations as Models of Allor-none Phenomena.”Bull. Math. Biophysics,11, 311–18.

    Article  MathSciNet  Google Scholar 

  • Katz, B. 1937. “Experimental Evidence for a non-conducted Response of Nerve to Subthreshold Stimulation.”Proc. Roy. Soc. B.,124, 244–76.

    Google Scholar 

  • — 1939.Electric Excitation in Nerve. London: Oxford University Press.

    Google Scholar 

  • — 1947. “Subthreshold Potentials in Medullated Nerve.”Jour. Physiol.,106, 66–79.

    Google Scholar 

  • Krylov, N. and N. Bogoliuboff. 1949.Introduction to Non-Linear Mechanics. (English Ed. by S. Lefschetz.) Princeton: Princeton University Press. (Ukran Eds., 1934 and 1937).

    Google Scholar 

  • Lefshetz, S. 1950.Contributions to the Theory of Non-Linear Oscillations. Princeton: Princeton University Press.

    Google Scholar 

  • Lillie, R. S. 1923.Protoplasmic Action and Nervous Action. Chicago: University of Chicago Press.

    Google Scholar 

  • — 1924. “Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model.”Jour. Gen. Physiol.,7, 473–507.

    Article  Google Scholar 

  • McLean, F. C. and A. B. Hastings. 1935. “The State of Calcium in the Fluids of the Body.”Jour. Biol. Chem.,108, 285–322.

    Google Scholar 

  • Minorsky, N. 1947.Introduction to Non-Linear Mechanics. Ann Arbor: J. W. Edwards.

    Google Scholar 

  • von Muralt, A. 1946.Die Signalübermittlung im Nerven. Basel: Verlag Birkhäuser.

    Google Scholar 

  • Osterhout, W. J. V. 1933. “Anesthesia in Acid and Alkaline Solution.”Jour. Gen. Physiol.,17, 99–103.

    Article  Google Scholar 

  • — 1934. “Nature of the Action Current in Nitella I.” —Ibid.,,18, 215–27.

    Article  Google Scholar 

  • — 1949. “Some Bioelectrical Problems.”Proc. Nat. Acad. Sci.,35, 548–58.

    Article  Google Scholar 

  • — and S. E. Hill. 1934. “The Nature of the Action Current in Nitella III.”Jour. Gen. Physiol.,18, 499–514.

    Article  Google Scholar 

  • Poincaré, H. 1892.Les méthodes nouvelles de la mécanique céleste I. Paris: Gauthier-Villars.

    Google Scholar 

  • van der Pol, B. 1926. “On Relaxation Oscillations.”Philosophical Mag.,2, November.

  • — and M. J. van der Mark. 1928. “Le battement du coeur considéré comme oscillation de relaxation et un modèle électrique du coeur.”L'Onde Electrique,7, 365–93.

    Google Scholar 

  • Rapoport, A. 1950. “Contribution to the Probabilistic Theory of Neural Nets: II. Facilitation and Threshold Phenomena.”Bull. Math. Biophysics,12, 187–97.

    Article  MathSciNet  Google Scholar 

  • Rashevsky, N. 1948.Mathematical Biophysics. Rev. Ed. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Rauch, L. L. 1950. “Oscillation of a Third Order Nonlinear Autonomous System.”Contributions to the Theory of Nonlinear Oscillations (Ed. S. Lefshetz). Princeton: Princeton University Press.

    Google Scholar 

  • Rushton, W. A. H. 1932. “A New Observation in the Excitation of Muscle and Nerve.”Jour. Physiol.,75, 16P.

    Google Scholar 

  • — 1937. “Initiation of the Propagated Disturbance.”Proc. Roy. Soc. B,124, 210–43.

    Article  Google Scholar 

  • Schaefer, H. 1940.Elektrophysiologie I. Wien: Frans Deuticke.

    Google Scholar 

  • Schäfer, O. 1943. “Untersuchung an einer Schaltung zur Erzeugung ein-und aussetsender Kippschwingungen.”Pflüg. Arch. f.d. ges. Physiol.,246, 520–24.

    Article  Google Scholar 

  • von Schelling, H. 1944. “Das All-order-Nichts-Gesetz, gedentet als Endergebnis einer Auslösungsfolge.”Abh. d. Prensz. Akad. d. Wissensch, Nr. 6.

  • Stoker, J. J. 1950.Nonlinear Vibrations in Mechanical and Electrical Systems. New York and London: Interscience Publishers.

    MATH  Google Scholar 

  • Tasaki, I. 1940. “Mikrophysiologische Untersuchung über die Grundlage der Erregungsleitung in der markhaltigen Nervenfaser.”Pflüg. Arch. f.d. ges. Physiol.,244, 125–41.

    Article  Google Scholar 

  • — and T. Takeuchi. 1941. “Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedentung für die Erregungsleitung.”Pflüg. Arch. f.d. ges. Physiol.,244, 696–711.

    Article  Google Scholar 

  • Verwey, E. J. W. and J. Th. G. Overbeek. 1948.Theory of the Stability of Lyophobic Colloids. Amsterdam and New York: Elsevier.

    Google Scholar 

  • Webb, D. A. and J. Z. Young. 1940. “Electrolyte content and action potential of the giant nerve fibres of Loligo.”Jour. Physiol.,98, 299–313.

    Google Scholar 

  • Weinberg, A. M. 1942. “Non-linear Excitation Theory: Non-Accommodative, Sub-Threshold Effects.”Bull. Math. Biophysics,4, 33–44.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karreman, G. Contributions to the mathematical biology of excitation with particular emphasis on changes in membrane permeability and on threshold phenomena. Bulletin of Mathematical Biophysics 13, 189–243 (1951). https://doi.org/10.1007/BF02478227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478227

Keywords

Navigation