Skip to main content
Log in

Verification of relationships between mechanical properties of concrete-like materials

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

It was proposed previously that a proper consideration of the concrete porosity can provide an improved method for the derivation of sound, reliable relationships between mechanical properties, such as strength and modulus of elasticity. The method of derivation is based on the differing effects of porosity in concrete on its mechanical properties. Several new formulas, such as equations 18) through 25) were derived from appropriate members of two groups of underlying equations: from equations 8) through 14), and equations 15) through 17). It is shown in figures 4 through 12 of this paper that the new formulas and, consequently, the outlined method of derivation are supported by experimental results despite the several simplifying assumptions applied. The fundamental advantage of the outlined method of derivation is that it is mathematical as compared to the empirical nature of the presently used methods.

Résumé

On avait précédemment établi qu'une étude congrue de la porosité du béton pouvait fournir une métnode améliorée d'obtention de relations sûres entre des propriétés mécaniques telles que la résistance et le module d'élasticité. Cette méthode d'obtention repose sur les effets dissemblables de la porosité du béton et sur ses propriétés mécaniques. A partir de deux groupes d'équations de base, de (8) à (14), et de (15) à (17), on a obtenu plusieurs relations nouvelles telles que les équatiens (18) à (25). On montre dans les figures 4 à 12 de cet article que ces nouvelles relations et par consèment la méthode d'essai exposée, sont corroborées par les résultats, malgré les diverses hypothèses simplificatrees dent on s'est servi. L'avantage fondamental de cette méthode est son caractère mathématique si on la compare aux méthodes empiriques utilisées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f′ c :

compressive strength of concrete, psi (psi×0.006,895=N/mm2)

f′ c0 :

compressive strength in the «zero state», psi

f crel :

f′ c /f′ c0=relative compressive strength

f f :

flexural strength of concrete, psi

f f0 :

flexural strength of concrete in the «zero state», psi

f frel :

f f /f f0=relative flexural strength

f p f :

a quantity calculated asw 0.5 f′ 0.7 c

E p :

modulus of elasticity calculated from the pulse velocity, psi

E p0 :

pulse modulus of elasticity in the «zero state», psi

E r :

modulus of elasticity calculated from the resonance frequency, psi

E r0 :

resonance modulus of elasticity in the «zero state», psi

E r rel :

E r /E r0=relative resonance modulus of elasticity

Est :

static modulus of elasticity, psi

Est0 :

static modulus of elasticity in the «zero state», psi

E pst :

a quantity calculated as E 1.4w r

K (with various subscripts):

experimental parameters that are independent of the composition and age but may be dependent on the method of curing and testing

v :

porosity in the concrete, percent

V:

pulse velocity in concrete ft/sec (ft/sec×0.305=m/sec)

V0 :

pulse velocity in the «zero state», ft/sec

Vrel :

V/V0=relative pulse velocity

w :

unit weight of the hardened concrete specimen, lb/cu ft (lb/cu ft×16.02=kg/m3)

w 0 :

unit weight in the «zero state», lb/cu ft

«zero state»:

an initial state of porosity in concrete, for instance, when the porosity in the macroscopic sense is zero.

References

  1. Popovics, S.Outline of a method for developing relationships between mechanical properties of concrete, Presented at the 74th Annual Meeting of ASTM, June, 1971. (A digest of this lecture appeared in the ACI Journal, Proc. Vol. 70, December. 1973.)

  2. Lord Rayleigh,The theory of sound, Vol. I and II, Dover Publications, New York, 1945.

    Google Scholar 

  3. Woods K. B., McLaughlin, J. F.—HRB Bulletin, 206, 1959, p. 14.

    Google Scholar 

  4. Whitehurst E. A.—Am. Conc. Inst. Mono., 2, 1966.

  5. Popovics S.—J. Mat., 2, 1969, p. 356.

    Google Scholar 

  6. Popovics S.—Mag. Conc. Res., 49, 1964, p. 211.

    Google Scholar 

  7. Ros M.—Bericht, 162, 1950.

  8. Shideler J. J.—J. ACI, 54, 1957, p. 299.

    Google Scholar 

  9. Reichard T. W.—Nat. Bur. Standards Mono., 74, 1964.

  10. Bolomey J.—Bulletin technique de la Suisse romande, 17 and 18, 1939.

  11. Schaffler H.—Betonstein Zeitung, 10, 1954, p. 432.

    Google Scholar 

  12. Pauw A.—J. ACI, 57, 1960, p. 679.

    Google Scholar 

  13. ACI Committee 318, ACI Stand., pp. 318–71.

  14. Wyllie M. R. J., Gregory A. R., Gardner L. W.—Geophysics, 21, 1956, p. 41.

    Article  Google Scholar 

  15. Biot M. A.—J. Acous. Soc. AM., 28, 1956, p. 168.

    Article  MathSciNet  Google Scholar 

  16. Mackenzie J. K.—Proc. Phys. Soc., 1, 1950, p. 2.

    Google Scholar 

  17. Hashin Z.—J. Appl. Mech., 1, 1962, p. 143.

    MathSciNet  Google Scholar 

  18. Griffith A. A.—Philos. Trans., 221, 1920, p. 163.

    Google Scholar 

  19. Coble R. L., Kingery W. D.—J. Am. Ceram. Soc., 11, 1956, p. 377.

    Article  Google Scholar 

  20. Spinner S., Knudsen F. P., Stone L.—J. Res. Natl. Bur. Stand., 1, 1963, p. 39.

    Google Scholar 

  21. Hansen T. C.—J. ACI Proc., 62, 1965, p. 193.

    Google Scholar 

  22. Martin R. B., Haynes R. R.—J. ACI Proc., 68, 1971, p. 36.

    Google Scholar 

  23. Popovics S.—J. Engr. Mech. Div., EM 3, 1969, p. 531.

    Google Scholar 

  24. Walker S.—Proc. ASTM, 19, 1919, p. 510.

    Google Scholar 

  25. Hummel A.—Das Beton-ABC, Verlag von Wilhelm Ernst and Sohn, Berlin, 1959.

    Google Scholar 

  26. L'Hermite R.—Annales de l'Institut Technique du Bâtiment et des Travaux Publics, 5, 1949 and 12, 1950.

  27. RILEM. International Symposium on Nondestructive Testing of Materials and Structures, Vol. I and II, RILEM, Paris, 1954.

    Google Scholar 

  28. Chefdeville J.—RILEM Bull., 15, 1953, p. 59.

    Google Scholar 

  29. Klieger P.—J. ACI Proc., 54, 1957, p. 481.

    Google Scholar 

  30. Takabayashi T.—RILEM International Symposium on Nondestructive Testing of Materials and Structures. Vol. I, RILEM, Paris, 1954.

    Google Scholar 

  31. Popovics S.—High. Res. Rec., 324, 1970, p. 1.

    Google Scholar 

  32. Elvery R. H.—RILEM International Symposium on Nondestructive Testing of Materials and Structures, Vol. I, RILEM, Paris, 1954.

    Google Scholar 

  33. Sharma M. R., Gupta B. L.—J. Indian Conc., 4, 1960, p. 139.

    Google Scholar 

  34. Stanton T. E.—ASTM Bull., 131, 1944, p. 17.

    Google Scholar 

  35. Malhotra V. M.—Mines Branch Mono., 875, 1968.

  36. Philleo R. E.—J. ACI Proc., 51, 1955, p. 461.

    Google Scholar 

  37. Morschtschichin W. N.Zerstorungsfreie Prüf- und Messtechnik fur Beton und Stahlbeton, 1969, p. 45.

  38. Leslie J. R., Cheesman W. J.—J. ACI Proc., 46, 1949, p. 17.

    Google Scholar 

  39. Sen B. R., Bharara A. L.—J. Indian Conc., 3, 1961, p 85.

    Google Scholar 

  40. Road Research Laboratory,Concrete roads, Her Majesty's Stationery Office, London, 1955.

    Google Scholar 

  41. ACI Committee 435, Subcommittee, 5, J. ACI Proc., 60, 1963, p. 1697.

  42. Popovics S.—High. Res. Rec., 210, 1967, p. 67.

    Google Scholar 

  43. Manns W.Dissertation. Technische Hochschule, Aachen, West Germany, 1969.

  44. Kaplan M. F.—J. ACI Proc., 56, 1960, p. 853.

    Google Scholar 

  45. Reagel F. V., Willis T. F.—Pub. Roads, 2, 1931, p. 37.

    Google Scholar 

  46. Ward M. A., Neville A. M., Singh S. P.—Mag. Conc. Res., 69, 1969, p. 205.

    Google Scholar 

  47. Hansen T. C.—J. ACI, 67, 1970, p. 404.

    Google Scholar 

  48. Sandstedt C. E., Ledbetter W. B., Gallawat B. M.—J. ACI, 70, 1973, p. 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovics, S. Verification of relationships between mechanical properties of concrete-like materials. Mat. Constr. 8, 183–191 (1975). https://doi.org/10.1007/BF02475168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02475168

Keywords

Navigation