Advertisement

Medical and biological engineering

, Volume 7, Issue 1, pp 49–56 | Cite as

Optimum electrolytic chloriding of silver electrodes

  • L. A. Geddes
  • L. E. Baker
  • A. G. Moore
Article

Abstract

The low frequency impedance of bare silver electrodes in contact with physiological saline was found to exhibit capacitive reactance and by the deposition of chloride the impedance became resistive in nature. It was found that a chloride deposit of 100–500 mA.sec/cm2 of electrode area provided the lowest electrode-electrolyte impedance. Prolongation of chloriding beyond this range increased the electrode-electrolyte impedance at all frequencies but did not alter the resistive nature of the impedance. To achieve a chloride deposit which is proportional to the product of mA and sec it was found that a minimum chloriding current density of 5 mA/cm2 of electrode area should be used.

Keywords

Silver Electrode Electrode Area Capacitive Reactance Chloride Deposit Lithium Chloride Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommaire

L'impédance à basse fréquence d'une électrode d'argent pur, plongée dans du sérum physiologique, présente une réactance capacitive, alors qu'elle devient résistive après dépôt de chlorure. Il a été montré qu'un dépôt de chlorure de 100 à 500 mA. sec/cm2 présente l'impédance électrode-électrolyte la plus faible. Au-delà de cette valeur, l'impédance croît à toutes les fréquences, mais sa partie résistive reste inchangée. Pour obtenir un dépôt de chlorure proportionnel au courant produit et au temps écoulé, on a montré que la densité du courant minimum doit être de l'ordre de 5 mA/cm2 d'électrode.

Zusammenfassung

Die Niederfrequenzimpedanz reiner Silberelektroden im Kontakt mit physiologischer Kochsalzlösung zeigte kapazitiven Widerstand. Nach Chloridablagerung wurde die Impedanz resistiv. Die Messungen ergaben bei einer Chloridschicht von 100–500 mA.sec/cm2 Elektrodenfläche die niedrigste Elektroden-Elektrolyt-Impedanz. Eine Verlängerung der Chloridierung über diesen Bereich erhöhte die Elektroden-Elektrolyt-Impedanz bei allen Frequenzen, änderte jedoch nicht die resistive Natur der Impedanz. Um eine Chloridschicht zu erhalten, welche dem Produkt von Milliampere und Sekunden proportional ist, muß nach unseren Messungen eine minimale Chloridierungsstromstärke von 5 mA/cm2 Elektrodenfläche eingesetzt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasiev, A. S. (1930) Influence of the solvent on the electromotive force of silver-silver halide cells.J. Am. chem. Soc. 52, 3477–3483.CrossRefGoogle Scholar
  2. Brown, A. S. (1934) A type of silver chloride electrode suitable for use in dilute solutions.J. Am. chem. Soc. 56, 646–647.CrossRefGoogle Scholar
  3. Bures, J., Petran, M. andZachar, J. (1962)Electrophysiological Methods in Biological Research. Academic Press, New York.Google Scholar
  4. Carmody, W. R. (1929) A study of the silver chloride electrode.J. Am. chem. Soc. 51, 2901–2904.CrossRefGoogle Scholar
  5. Carmody, W. R. (1929) Studies in the measurement of electromotive force in dilute aqueous solutions. I. A study of the lead electrode.J. Am. chem. Soc. 51, 2905–2909.CrossRefGoogle Scholar
  6. Carmody, W. R. (1932) Studies in the measurement of electromotive force in dilute aqueous solutions. II. The silver chloride electrode.J. Am. chem. Soc. 54, 188–192.CrossRefGoogle Scholar
  7. Cole, K. S. andKishimoto, U. (1962) Platinized silver chloride electrode.Science, N. Y. 136, 381–382.Google Scholar
  8. Cole, K. S. (1967) Personal communication.Google Scholar
  9. Cooper, R. (1963) Electrodes.Am. J. EEG Technol. 3, 91–101.Google Scholar
  10. Day, J. andLippitt, M. (1964) A long-term electrode system for electrocardiography and impedance pneumography.Psychophysiol. 1, 174–182.Google Scholar
  11. Geddes, L. A. andBaker, L. E. (1967) Chlorided silver electrodes.Med. Res. Engng 6, 33–34.Google Scholar
  12. Goldstein, A. G., Sloboda, W. andJennings, J. B. (1962) Spontaneous electrical activity of three types of silver EEG electrodes.Psychophysiol. Newslett. 8, 10–16.Google Scholar
  13. Greyson, J. (1962) Silver-silver chloride electrodes using optical silver chloride crystals.J. electrochem. Soc. 109, 745–746.Google Scholar
  14. Jahn, H. (1900) Über den Dissociationsgrad und das Dissociationsgleichgewicht stark dissociierter Elektrolyte.Z. phys. Chem. 33, 545–576.Google Scholar
  15. Janz, G. J. andIves, D. J. G. (1968) Silver-silver chloride electrodes.Ann. N.Y. Acad. Sci. 148, 210–221.Google Scholar
  16. MacInnes, D. A. andParker, K. (1915) Potassium chloride concentration cells.J. Am. chem. Soc. 37, 1445–1461.CrossRefGoogle Scholar
  17. MacInnes, D. A. andBeattie, J. A. (1920) The free energy of dilution and the transference numbers of lithium chloride solutions.J. Am. chem. Soc. 42, 1117–1128.CrossRefGoogle Scholar
  18. O'Connell, D. H., Tursky, B. andOrne, M. T. (1960) Electrodes for recording skin potential.Archs gen. Psychiat. 3, 252–258.Google Scholar
  19. Skov, E. R. andSimons, D. G. (1965) EEG electrodes for in-flight monitoring. SAM-Tech. Rep. TR-65-18. USAF School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  20. Smith, E. R. andTaylor, J. K. (1938) Reproducibility of the silver-silver chloride electrode.J. Res. natn Bur. Stand. 20, 837–847.Google Scholar
  21. Taylor, J. K. andSmith, E. R. (1939) Reproducibility of silver-silver halide electrodes.J. Res. natn Bur. Stand. 22, 307–314.Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 1969

Authors and Affiliations

  • L. A. Geddes
    • 1
  • L. E. Baker
    • 1
  • A. G. Moore
    • 1
  1. 1.Department of PhysiologyBaylor University College of MedicineHoustonUSA

Personalised recommendations