Skip to main content
Log in

Geochemical investigations on fluvial sediments contaminated by tin-mine tailings, Cornwall, England

  • Published:
Environmental Geology

Abstract

Tin-mine tailings containing high concentrations of Sn, Cu, Zn, Fe, Mn, As, and W are discharged into the Red River of cornwall, England and are then transported into St. Ives Bay under normal flow conditions. Most of the tin-bearing particles in the fluvial sediments are smaller than 170 μm, but tin-bearing composite grains or mineral grains with tin interspersed in the crystal lattices also occur in coarser size fractions. Tin distribution in the sediments is controlledby: (1) the distance from the source of the tailings, and (2) the concentration processes operating on the river bed. Suspended sediment and sediment transported by saltation filtered from river water samples also showed high concentrations of metals although, in contrast to the bottom sediments, they vary within a narrow range. Distributions of Cu, Zn, Fe, As, and Pb in the filtered sediments probably are related to the physical and chemical behavior of their sulphide minerals during fluvial transportation.

A regional stream-sediment geochemical reconnaissance survey for tin did not show the highest concentration in the Red River; this indicated that in other rivers and streams tin reconcentration by selective removal of light minerals had taken place in the bottom sediments after mining operations had ceased. These rivers and streams also can transport large quantitiies of land-derived sediment including tin-mine tailings discharged into them when mines were operating. The minimum distance of tin transported by the Red River is at least 10 km; however, most of the tin was derived from mine tailings and is considered to be unnatural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Aleva, G. J. J., L. J. Fick, and G. L. Krol, 1973. Some remarks on the environmental influence on secondary tin deposits. Bull. Bur. Miner. Resour. Geol. Geophys. Aust., no. 141, p. 163–172.

    Google Scholar 

  • Almond, H., 1953. A field method for the determination of traces of arsenic in soils—a confined spot procedure using a Gutzeit apparatus: Additional field methods used in geochemical prospecting by the U.S. Geol. Survey, open file report, p. 8–11.

  • Anon., 1979. Bad year for Cornwall: Mining Jour., v. 292, p. 424.

  • Aston, S. R., I. Thornton, and J. S. Webb, 1974. Stream sediment composition: an aid to water quality assessment: Water. Air, and Soil Poll., v. 3, p. 321–325.

    Google Scholar 

  • , 1975. Arsenic in stream sediments and waters of South West England: The Science of the Total Environ., v. 4, p. 347–358.

    Article  Google Scholar 

  • Aston, S. R., and I. Thornton, 1977. Regional geochemical data in relation to seasonal variations in water quality. The Science of the Total Environ., v. 7, p. 247–260.

    Article  Google Scholar 

  • Barton, D. B., 1967. A history of tin mining and smelting in Cornwall: Truro, Cornwall, D. Bradford Barton Ltd., 320 p.

    Google Scholar 

  • Bowman, J. A., 1968. The determination of tin in ores and concentrates by atomic absorption spectrometry in the nitrous oxide-acetylene flame. Anal. Chim. Acta. v. 42, p. 285–291.

    Article  Google Scholar 

  • Burt, R. O., and D. J. Ottley, 1973. Developments in fine gravity concentration using the Bartles-Mozley table: Canadian Mineral Processors Fifth Annual Meeting, 1973.

  • Dunlop, A. C., 1973, Geochemical dispersion of tin in stream sediments and soils in south-west England: Ph.D. thesis, University of London.

  • Emery, K. O., and L. C. Noakes, 1968. Economic placer deposits of the continental shelf. Comm. Co-ord. Joint Prospecting for Min. Res. in Asian Offshore Areas Tech. Bull., v. 1, p.95–111.

    Google Scholar 

  • Folk, R. L., and W. C. Ward, 1957. Brazos River bar: a study in the significance of grain size parameters. Jour. Sed. Pet., v. 27, p. 3–26.

    Google Scholar 

  • Hazelhoff Roelfzema, B. H., and J. S. Tooms, 1969, Dispersion of cassiterite in the marine sediments of western Mounts Bay, Cornwall: in W. Fox, ed., A Second Tech. Conf. on Tin, Bangkok 1969, v. 2, p. 491–516.

  • Henley, S., 1974. Geochemistry of Devonian sediments in the Perranporth area, Cornwall: Proc. Ussher Soc., v. 3, p. 128–135.

    Google Scholar 

  • Hosking, K. F. G., 1960. Some aspects of the stability of sulphides, and other normally unstable minerals of economic importance, in the lodes, boulders and pebbles of the Cornish beaches. Camborne Sch. Mines Mag., v. 60, p. 11–18.

    Google Scholar 

  • Hosking, K. F. G., 1964, Permo-Carboniferous and later primary mineralization of Cornwall and south-west Devon, in K. F. G. Hosking and G. J. Shrimpton, eds., Present views of some aspects of the geology of Cornwall and Devon: Roy. Geol. Soc. Cornwall, p. 201–245.

  • Hosking, K. F. G., 1969, The nature of the primary tin ores of the south-west of England: in W. Fox, ed., A Second Tech. Conf. on Tin, Bangkok 1969, v. 3, p. 1155–1244.

  • Hosking, K. F. G., 1971, Problems associated with the application of geochemical methods of exploration in Cornwall, England, in R. W. Boyle and J. I. McGerrigle, eds., Geochemical exploration: Canadian Inst. Min. Metall., special v. 11, p. 176–189.

  • Hosking, K. F. G., and P. M. Ong, 1963–4. The distribution of tin and certain other heavy metals in the superficial portions of the Gwithian/Hayle beach of west Cornwall. Trans. Roy. Geol. Soc. Cornwall, v. 19, p. 351–390.

    Google Scholar 

  • Osborne, D., 1973. Mineral processing in Cornwall: Mining Mag., v. 128, p. 246–264.

    Google Scholar 

  • Stanton, R. E., 1976. The colorimetric determination of tungsten in soils, sediments and rocks by zinc dithiol. Proc. Aus. Inst. Min. Metall., v. 236, p. 59–60.

    Google Scholar 

  • , 1976. Analytical methods for use in geochemical exploration: London, Edward Arnold, 55 p.

    Google Scholar 

  • Stanton, R. E., and A. J. McDonald, 1961–2, Field determination of tin in soil and stream sediment surveys. Trans. Inst. Min. Metall., v. 71, p. 27–29.

    Google Scholar 

  • Thomas, W., 1913. Losses in the treatment of Cornish tin ores: Trans. Corn. Inst. Min. Mech. Metall. Engrs., v. 1, p. 56–74.

    Google Scholar 

  • Tooms, J. S., D. Taylor Smith, I. Nichol, P. Ong, and J. Wheildon, 1965. Geochemical and geophysical mineral exploration experiments in Mounts Bay, Cornwall, in W. F. Whittard and R. Bradshaw, eds., Submarine geology and geophysics: Colston papers, p. 363–391.

  • Vorob'yev, V. P., and R. B. Krapivner, 1975. Preliminary classification of coastal-marine placers. Int. Geol. Rev., v. 17, p. 823–829.

    Article  Google Scholar 

  • Yim, W. W.-S., 1976. Heavy metal accumulation in estuarine sediments in a historical mining area of Cornwall: Mar. Poll. Bull., v. 7, p. 147–150.

    Article  Google Scholar 

  • , 1979a. Rapid methods of tin determination for geochemical prospecting: Geol. Soc. Malaysia Bull., no. 11, p. 375–386.

    Google Scholar 

  • , 1979b. Geochemical exploration for offshore tin deposits in Cornwall. Proceedings of the Eleventh Common-wealth Min. Metall. Cong., Hong Kong, 1978, in M. J. Jones, ed., Inst. Min. Metall., London, p. 67–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, W.W.S. Geochemical investigations on fluvial sediments contaminated by tin-mine tailings, Cornwall, England. Geo 3, 245–256 (1981). https://doi.org/10.1007/BF02473516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473516

Keywords

Navigation