Skip to main content
Log in

Strength development in hardened cement paste: examination of some empirical equations

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A number of empirical expressions are frequently used to describe or predict the strength of normal hardened cement paste. The more well-known expressions of Balshin, Hasselman and Ryshkewitch relate strength and porosity. The Bolomey formula relates strength and water/cement ratio. All these expressions are shown to be theoretically well justified. They are pore-specific versions of a more general expression presented in this paper. The Balshin expression is suggested to be in general the better strength-porosity relation. Bolomey’s formula is shown to be a logical numerical consequence of this statement. Parameters are given for both these relations which depend on degree of hydration. The Ryshkewitch expression applies strictly only at vanishing porosity. Low-porosity strengths are overestimated by the Ryshkewitch expression when calibrated (fitted) to experimental data at finite porosities.

Resume

On utilise souvent un certain nombre de formules empiriques pour décrire ou prédire la résistance de la pâte de ciment durci normale. Les formules les plus répandues de Balshin, Hasselman et Ryshkewitch établissent un rapport entre la résistance et la porosité, celle de Bolomey entre la résistance et le rapport eau/ciment. On montre que les formules présentent une bonne justification théorique.

Les expressions constituant une version spécifique d’une formule plus générale sont présentées ici. On suggère que la formule de Balshin donne en général la meilleure relation résistance-porosité. Il apparaît que la formule de Bolomey est une conséquence numérique logique de cette affirmation. On donne les paramètres pour des deux relations qui dépendent du degré d’hydratation. Les formules de Ryshkewitch s’appliquent uniquement au cas de la porosité tendant vers zéro. Les résistances à une porosité faible sont surestimées par la formule de Ryshkewitch quand on la compare aux données pour des porosités limitées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fagerlund, G., ‘Samband mellan porositet och materials mekaniska egenskaper’ (‘Relations between porosity and materials mechanical properties’, Rapport 26 (1972) (Institutionen för Bygnadsteknik, Tekniska Högskolan i Lund, Sweden, 1972).

    Google Scholar 

  2. Balshin, M. Y., ‘Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous metal-ceramic materials’Dokl. Akad. Nauk SSSR 67 (5) (1949) 831–834.

    Google Scholar 

  3. Hasselman, D. P. H., ‘Relation between effects of porosity on strength and on Young’s modulus of elasticity of polycrystalline materials’,J. Amer. Ceram. Soc. 46 (1963) 564–565.

    Article  Google Scholar 

  4. Ryshkewitch, E., ‘Compression strength of porous sintered alumina and zirconia,’-ibid. 36 (1953) 65–68.

    Article  Google Scholar 

  5. Duckworth, W., ‘Discussion of Ryshkewitch paper’,-ibid. 36 (1953), 68.

    Article  Google Scholar 

  6. Bolomey, J., ‘Determination de la résistance à la compression des mortiers et bétons’ (Determination of compressive strength of mortar and concrete),Bull. Tech. Suisse Romande 14 (1925) 126–133 and 169–173.

    Google Scholar 

  7. Idem, ibid. 14 (1925) 182–184 and 209–213.

    Google Scholar 

  8. Nielsen, L. F., ‘Elastic properties of two-phase materials’,Mater. Sci. Eng. 52 (1982) 39–62.

    Article  Google Scholar 

  9. Idem,, ‘Elasticity and damping of porous materials and impregnated materials’,J. Amer. Ceram. Soc. 67 (1984) 93–98

    Article  Google Scholar 

  10. Idem, ‘Strength and stiffness of porous materials,’-ibid. 73 (1990) 2684–2689.

    Article  Google Scholar 

  11. Powers, T. C., ‘Physical properties of cement paste’, Proceedings of 4th International Symposium on the Chemistry of Cement, Washington, DC, 1960, Monograph 2, No. 43 (US Department of Commerce, National Bureau of Standards, 1962).

  12. Powers, T. C. and Brownyard, T. L., ‘Studies of the physical properties of hardened cement paste,’ACI J. Proc. 41 (1946–47) 101, 249, 469, 549, 669, 845,865, 933, 971; Portland Cement Association, Chicago, Research Department Bulletin 22 (1948).

    Google Scholar 

  13. Feldman, R. F. and Sereda, P. J., ‘A new model for hydrated Portland cement and its practical implications,’,Engng J. (Canada) 53 (1970) 53–59.

    Google Scholar 

  14. Wittman, F. H., ‘Cement production and use’, Publication No. 79-08 (Engineering Foundation, New York, 1979) pp. 143–161.

    Google Scholar 

  15. Mindess, S. and Young J. F., ‘Concrete’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1981).

    Google Scholar 

  16. Hansen, T. C. ‘Physical structure of hardened cement paste —A classical approach,’Mater. Struct. 19 (1986) 423–436.

    Article  Google Scholar 

  17. Illston, J. M., Dinwoodie, J. M. and Smith, A. A., ‘Concrete, Timber and Metals’ (Van Nostrand Reinhold, London, 1979) Section 3.2.3.

    Google Scholar 

  18. Ahlgren, L., Bergström, S. G., Fagerlund, G. and Nielson, L. O., ‘Moisture in Concrete’ (Cement and Concrete Institute, Stockholm, 1976).

    Google Scholar 

  19. Diamond, S., ‘Pore structure of hardened cement paste as influenced by hydration temperature’, in Proceedings of RILEM/IUPAC Conference on Pore Structure and Properties of Materials, Prague, 1973 (Academia, Prague, 1974), Paper B-73.

  20. Nielsen, L.F., ‘On the prediction of rheological parameters for concrete’, in ‘Nordic Seminar on Deformations of Concrete Structures’, edited by G. Mohr, in ‘DIALOG 1–80’ (Civil Engineering Department, Danish Engineering Academy, 1980), pp. 81–118.

  21. Idem,, ‘On the prediction of creep functions for concrete’, in ‘Fundamental Research on Creep and Shrinkage of Concrete’, edited by F. H. Wittmann (Nijhoff, The Hague, 1982), pp. 279–289.

    Google Scholar 

  22. Hansen, P. F., ‘Hærdeteknologie-I, Portland Cement’ and ‘Hærdeteknologi-II, Dekrementmetoden’ (‘Technology of Portland Cement Paste Hardening: Parts I and II) (Building and Structures Research Station (Bkfcentralen), Copenhagen, 1978).

    Google Scholar 

  23. Hansen, P. F. and Pedersen, E. J., ‘Vinterstøbning af Beton’ (‘Use of Concrete in Wintertime), Publication SBI-125 (Building Research Station (SBI), Copenhagen, 1982).

    Google Scholar 

  24. Nielsen, L. F., ‘Shrinkage, swelling, and stiffness of composites: strain and stress caused by hygro-thermal action and solidification or freezing of liquid impregnant’,Bygningsstatiske Meddelelser (Copenhagen) 62 (1991) 47–78.

    Google Scholar 

  25. Wischers, G. ‘Einfluss einer Temperaturänderung auf die Festigkeit von Zementstein und Zementmörtel mit Zuschlagstoffen verschiedener Wärmedehnung’ (‘Influence of temperature change on strength of hardened cement paste and mortar with aggregates of different thermal expansions’), in ‘Schriftenreihe der Zement Industrie,’ Heft 28 (Verein Deutscher Zementwerke, Düsseldorf, 1961).

    Google Scholar 

  26. Rössler, H. and Odler, I., ‘Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. Part I: Effect of Porosity,’Cem. Concr. Res. 15 (1985) 320–330.

    Article  Google Scholar 

  27. Alexander, K. M., Wardslaw, J. and Gilbert, D. J. ‘Aggregate-cement bond, cement paste strength and the strength of concrete’, in ‘The Structure of Concrete’, edited by A. E. Brooks and K. Newman (Cement and Concrete Association, London, 1968) 59–81.

    Google Scholar 

  28. Bergström, S., ‘Lagringstemperatur, Lagringstid och Betonghållfasthet’, (‘Curing Temperature, Curing Time and Strength of Concrete’), Medd. No. 27 (Cement och Betong Institutet, Stockholm, 1953).

    Google Scholar 

  29. Nurse, R. W., ‘Cohension and adhesion in solids’, in ‘The Structure of Concrete,’ edited by A. E. Brooks and K. Newman (Cement and Concrete Association, London, 1968) pp. 49–58.

    Google Scholar 

  30. Bajza, A., ‘Physical Properties of Cement, Cement Paste and Mortar Compacted by High Pressure’, Technical Report (Cement and Concrete Association, London, 1970).

    Google Scholar 

  31. Roy, D. M. and Gouda, G. R., ‘Optimization of strength in cement pastes’,Cem. Concr. Res. 5 (1975) 153–162.

    Article  Google Scholar 

  32. Hansen, T. C., in ‘Studies on Concrete Technology’ (Swedish Cement and Concrete Research Institute, Stockholm, 1979) pp. 34–41.

    Google Scholar 

  33. Paulini, P., ‘Zum Einfluss der Porenform auf die Materialfestigkeit,’ (‘On the influence of pore shape on strength of materials’),Fortschrittsber. Deutsch. Keram. Gesell. 3 (1988) 191–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, L.F. Strength development in hardened cement paste: examination of some empirical equations. Materials and Structures 26, 255–260 (1993). https://doi.org/10.1007/BF02472946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472946

Keywords

Navigation