Skip to main content
Log in

Improved prediction model for time-dependent deformations of concrete: Part 3-Creep at drying

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Part 3 of the present series gives the prediction formulae for the average compliance function in the cross-section of a specimen exposed to drying at constant temperature. The formulae describe the additional creep due to drying by means of the shrinkage function, which automatically introduces the consequences of diffusion theory, such as the dependence of creep on cross-section thickness and shape. The prediction formulae are compared with 19 different data sets from the literature, which reveal relatively good agreement, better than that with previous models. The main source of error is insufficient knowledge of the effect of mix composition and concrete strength. It is advisable to avoid this error by carrying out short-time measurements whenever possible.

Resume

Dans le troisième volet de cette série, on présente les formules de prédiction pour la fonction de compliance moyenne dans la section transversale d’une éprouvette soumise au séchage à température constante. Les formules décrivent le fluage additionnel causé par le séchage au moyen de la fonction de retrait qui introduit automatiquement les aboutissements de la théorie de diffusion, tels ceux qui font dépendre le fluage de l’épaisseur et de la forme de la section transversale. On compare les formules de prédiction à 19 séries de données prises dans la littérature, qui présentent une assez bonne concordance, supérieure à celle obtenue avec les modèles précédents. La source principale d’erreur réside dans une connaissance insuffisante du dosage et de la résistance du béton. On conseille d’éviter cette erreur en effectuant des mesures à court terme chaque fois que c’est possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant, Z. P., ‘Material models for structural creep analysis’, in ‘Mathematical Modeling of Creep and Shrinkage of Concrete’, edibed by Z. P. Bažant (Wiley, Chichester and New York, 1988) pp. 99–215.

    Google Scholar 

  2. Bažant, Z. P. and Chern, J. C., ‘Concrete creep at variable humidity: constitutive law and mechanism’,Mater. Struct. 18(103) (1985) 1–20.

    Google Scholar 

  3. Bažant, Z. P. and Panula, L., ‘Practical prediction of time-dependent deformations of concrete’, Parts I and II:ibid. 11(65) (1978) 307–328. Parts III and IV:ibid. Mater. Struct. 11(66) (1978) 415–434, Parts V and VI:ibid. Mater. Struct. 12(69) (1979) 169–183.

    Google Scholar 

  4. Bažant, Z. P. and Kim, J.-K., ‘Improved prediction model for time-dependent deformations of concrete: Part 2— Basic creep’,ibid. 24 (1991) 409–421.

    Article  Google Scholar 

  5. Bažant, Z. P., Kim, J.-K. and Panula, L., ‘Improved prediction model for time-dependent deformations of concrete: Part I—Shrinkage’,ibid. 24 (1991) 327–345.

    Google Scholar 

  6. Simenov, I. and Bozhinov, G., ‘Some features of the structure of cement stone influencing the creep mechanism of concrete’, inProceedings of International Conference on Mechanical Behaviour of Materials, Kyoto, Japan, 1972, Vol. IV, pp. 262–266.

  7. Bažant, Z. P. and Wang, T. S., ‘Practical prediction of cyclic humidity effect in creep and shrinkage of concrete’,Mater. Struct. 18(106) (1985) 247–252.

    Article  Google Scholar 

  8. Hansen, T. C. and Mattock, A. H., ‘Influence of size and shape of member on the shrinkage and creep of concrete’,ACI J. 63 (1966) 267–290.

    Google Scholar 

  9. Hummel, A., Wesche, K. H. and Brand, W., ‘Der Einfluss der Zementart, des Wasser-Zement-Verhältnisses und des Belastungsalters auf das Kriechen von Beton’, Deutscher Ausschuss für Stahlbeton, Heft 146 (Ernst, Berlin, 1962) pp. 1–58.

    Google Scholar 

  10. Keeton, J. R., ‘Study of creep in concrete’, Technical Reports R333-1, R333-II, R333-III (US Naval Civil Engineering Laboratory, Port Hueneme, California, 1965).

    Google Scholar 

  11. Lambotte, H. and Mommens, A. L., ‘L’évolution du retrait du béton en fonction de sa composition et de l’âge’, Technical Report, groupe de travail GT22 (Centre national de recherches scientifiques et techniques et pour l’industrie cimentière. Bruxelles, 1976), and privately communicated unpublished data (1978).

  12. L’Hermite, R. G., Mamillan, M. and Lefévre, C., ‘Nouveaux résultats de recherches sur la déformation et la rupture du béton’,Ann. Inst. Techn. Bâtiment Trav. Publics 18(207–208) (1965) 323–360; see also International Conference on the Structure of Concrete (Cement and Concrete Association, London, England, 1968) pp. 423–433.

    Google Scholar 

  13. L’Hermite, R. G. and Mamillan, M., ‘Influence de la dimension des éprouvettes sur le retrait’,ibid. 23(270) (1970) 5–6.

    Google Scholar 

  14. Maity, K. and Meyers, B. L., ‘The effect of loading history on the creep and creep recovery of sealed and unsealed plain concrete speciments’, Report No. 70-7, NSF Grant GK-3066 (Department of Civil Engineering, University of Iowa, Iowa City, 1970).

    Google Scholar 

  15. McDonald, J. E., ‘Time-dependent deformation of concrete under multiaxial stress conditions’, Technical Report C-75-4 (Concrete Laboratory, US Army Engineering Waterways Experiment Station, Vicksburg, Miss., 1975).

    Google Scholar 

  16. Mossiossian, V. and Gamble, W. L., ‘Time-dependent behavior of non-composite and composite prestressed concrete structures under field and laboratory conditions’, Structural Research Series No. 385, Illinois Cooperative Highway Research Program, Series No. 129 (Civil Engineering Studies, University of Illinois, Urbana, 1972).

    Google Scholar 

  17. Rostasy, F. S., Teichen, K.-Th. and Engelke, H., ‘Beitrag zur Klärung des Zusammenhanges von Kriechen und Relaxation bei Normal-beton’, Amtliche Forschungs—und Materialprüfungsanstalt für das Bauwesen, Heft 139 (Otto-Graf-Institut, Universität Stuttgart, Strassenbau und Strassenverkehrstechnik. 1972).

  18. Troxell, G. E., Raphael, J. E. and Davis, R. W., ‘Long-time creep and shrinkage tests of plain and reinforced concrete’,Proc. ASTM 58 (1958) 1101–1120.

    Google Scholar 

  19. York, G. P., Kennedy, T. W. and Perry, E. S., ‘Experimental investigation of creep in concrete subjected to multiaxial compressive stresses and elevated temperatures’, Research Report 2864-2 to Oak Ridge National Laboratory (Department of Civil Engineering, University of Texas. Austin, June 1970); see also ‘Concrete for Nuclear Reactors’, American Concrete Institute Special Publication No. 34 (1972) pp. 647–700.

    Google Scholar 

  20. Bažant, Z. P. and Chern, J. C., ‘Strain-softening with creep and exponential algorithm’,J. Engng Mech. ASCE 111 (EM5) (1985) 391–451.

    Google Scholar 

  21. Idem, ‘Strain-softening thermal and shrinkage strains in concrete’,ibid. 113(10) (1987) 1493–1511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bažant, Z.P., Kim, JK. Improved prediction model for time-dependent deformations of concrete: Part 3-Creep at drying. Materials and Structures 25, 21–28 (1992). https://doi.org/10.1007/BF02472209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472209

Keywords

Navigation